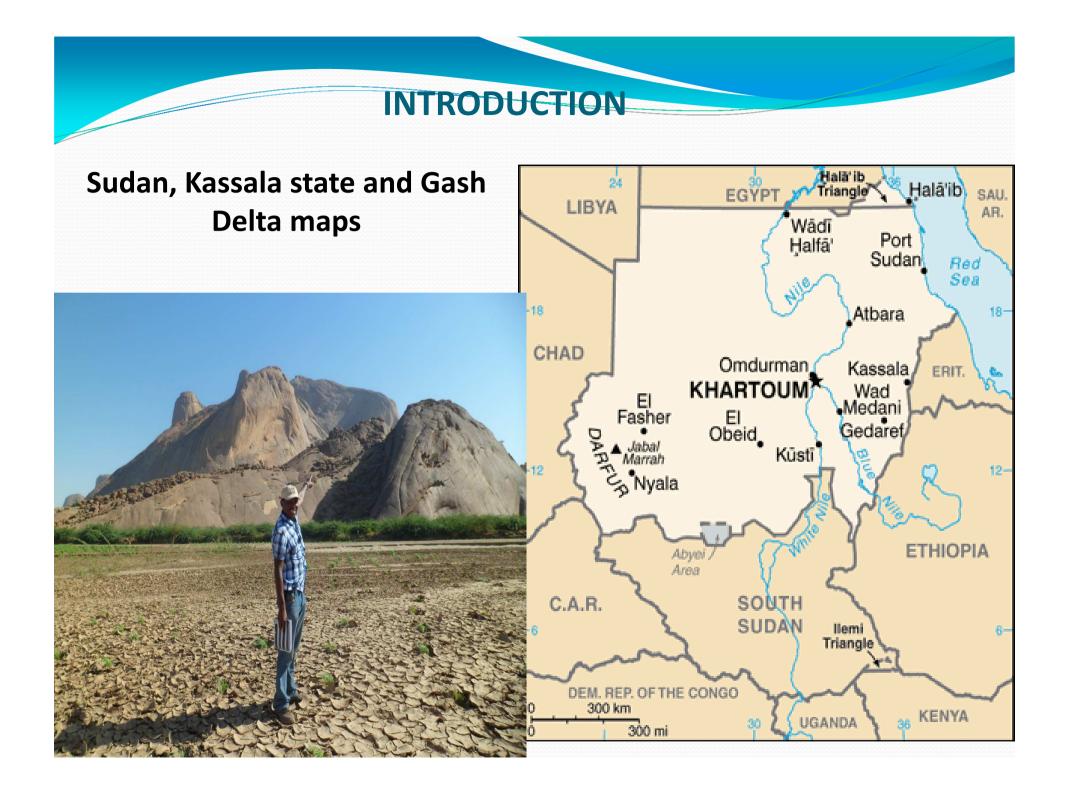
MESQUITE TREE INFESTATION ON GASH SPATE IRRIGATION SYSTEM: Impacts and Remedial Measures

Regional Conference on Invasive Species in ASAL-Managing Prosopis Juliflora (Mesquite) for better(agro-) pastoral livelihoods in the Horn of Africa @Desalegn Hotel,

Addis Ababa, Ethiopia

@1440-1500hrs, May 1st, 2014


- Presented by:
- Hamisi Said Nzumira
- UNESCO IHE-Institute for Water Education, Delft, Netherlands
- Acknowledgement
- Prof Charlotte de Fraiture-UNESCO IHE

NESCO-IHE

- Dr. Frank van Steenbergen MetaMeta
- Dr. Abraham Mehari Haile-UNESCO-IHE
- Dr. Yasir Abbas Mohamed-UNESCO-IHE

Outlines

- 1. Introduction
- 2. Problem statement
- 3. Research objectives
- 4. Research Questions and Methodology
- 5. Results and Major findings
- 6. Conclusions and Recommendations

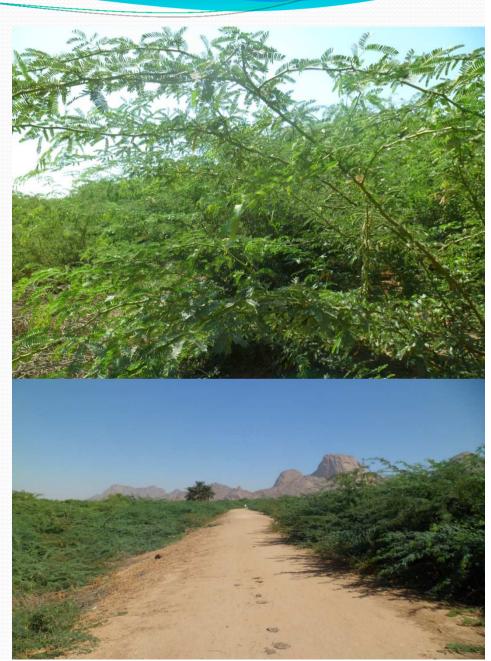
> Agriculture is the main activity in Sudan

- -contribute about 38% of GDP
- -80 % of the population dependent on agriculture
- -provides about 80 % of the country's export
- Main crops are Sorghum, Cotton, Groundnuts
- Gash Agricultural Scheme (GAS)

-pilot projects , that serves the local population(approx. 1.5million people) around Kassala state

Gash River

-originates from the Eritrea/Ethiopian Plateau and ends up in Gash delta


The Kassala state is heavily impacted by desertification
 The scheme has been invaded by Mesquite trees

Mesquite Tree

Mesquite (Prosopis spp.) - exotic plant, invasive having ecological, economic and social impacts, (Osmond et al.,2003)

Mesquite tree was introduced in 1917 in northern and eastern parts of Sudan for the purposes of dune stabilization

(Broun & Makey, 1929)

PROBLEM STATEMENT

Over 100,000 ha of irrigable land is estimated to be infested Mesquite blocks irrigation canals and reduces water capacity Invades the agriculture areas hence diminishing the cultivated land

Absence of permanent land leads to lack of user right

RESEARCH OBJECTIVES

- To quantify spatial and temporal land cover changes of the Mesquite tree in the GAS using satellite imageries from 1979 to 2013
- To analyze the impact of mesquite tree infestation on the agricultural production in GAS
- To assess the effectiveness of measures used to control Mesquite trees in Gash area
- To recommend alternative technical and economical feasible control measures of mesquite tree infestation in Gash area

RESEARCH QUESTIONS & METHODOLOGY					
Research question	Methodology				
How the Mesquite tree infestation has changed over the years	 ✓ Review of relevant literature (journals, books, publications, conference papers, previous thesis) ✓ analysis of Remote Sensing land cover maps of mesquite infestation trends ✓ Changing detection analysis-calculation on the arcgis 9.3.1 				
What are the factors that have contributed to those changes	 ✓ Review of relevant literatures ✓ Interview with stakeholders (local farmers, research institutes)- Questionnaires 				
What are the impacts of Mesquite trees infestation on agriculture production in GAS	 ✓ Literature review ✓ Analysis of the remote sensing imageries of the Gash delta (1979–2013) ✓ Canal Capacity measurement, water use calculations ✓ Aqua-crop modeling 				
How effective are the existing measures to reduce or eradicate the infestation of mesquite trees has been done	 ✓ Literature reviews ✓ References from articles & consultants consultation, Researcher 's results on the measure to improve ✓ Interviews with stakeholders ✓ Field observation & satellite based analysis 				
What alternative measures if any, could be recommended	 ✓ Interviews with stakeholders (local farmers, research institutes) ✓ Research resulted validated in the stakeholder consultants 				

Methodology

	Landsat(1-3 MSS)	Landsat(4-5 TM)	Landsat(4-5 TM)	Landsat 8 OLI			
Date acquired	13/05/1979	13/05/1985	13/05/1998	26/04/2013			
Path	184	171	171	171			
Row	49	49	49	49			
Spatial resolution (m)	60	30	30	30			
Temporal resolution (days)	18	16	16	16			
Number of bands	4	7	7	11			
Spectral-Band combination used (RGB)	6-5-4 (NIR-R-G)	7-4-2(SWIR-NIR-G)	7-4-2(SWIR-NIR-G)	6-5-4 (NIR-R-G)			
Image size (swath- km ²)	180 x180	185 x185	185X185	185x185			
Cloud cover (%)		0	0	0			
SWIR band (1.55 – 1.75 µm) Overall Accuracy assessment from confusion matrix is 76%							

Ground Truthing

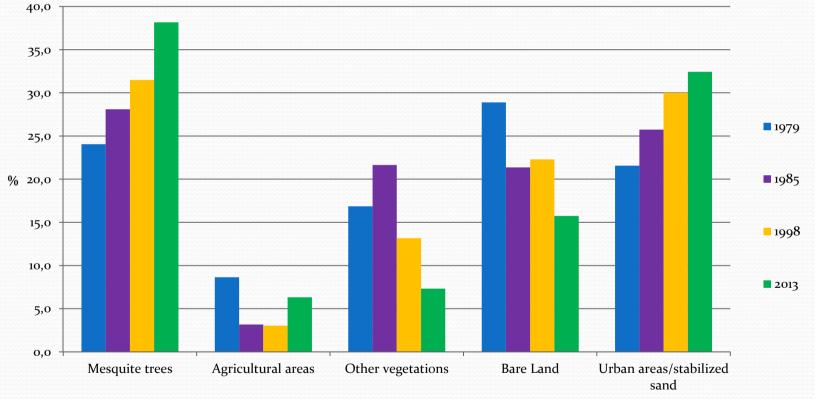
Field Work

- ✓ 91 GCPs covered in Gash Delta
- Changing detection from imageries of Landsat 1-3(MSS)-1979,Landsat 4-5(TM) 1985,1998 and Landsat 8(OLI) 2013
- Data analysis from interviewsquestionnaires, consultations, agriculture, irrigation, hydrology and livestock stakeholders

RESULTS

Major finding 1-How the Mesquite Tree infestation has changed

over the years


	Area(h a)	%	Area(ha)	%	Area(ha)	%	Area(ha)	%
	19)79	19	985	19	98	20	13
Mesquite trees	89,428	8 24	104,483	28	117,076	32	141,942	38
Agricultural areas	32,12	5 9	11,777	3	11,326	3	23,538	6
Other vegetations	62,652		80,445	22	48,971	13	27,210	7
Bared Land	107,443		79,455	21	82,914	22	58,572	16
Urban areas	80,21		95,710	26	111,583	30	120,608	32

Change detected

Change detected, gained & disappeared areas by mesquite trees

	Areas (Ha)						
	Mesquite trees Disappeared	Mesquite trees Gain	Net gain				
Change Detection 1998 vs 1985	7,290	58,583	51,293				
Change Detection 2013 vs 1998	18,841	56,975	38,134				
Change Detection 2013 vs 1985	10,708	100,135	89,427				

Land Cover Change on GAS, Kassala state in Sudan (1979-2013)

Land Classification

Major finding 2- what are the factors that contribute

to the trends-Livestock cause

Livestock dung characterized by high water retention capacity ensure germination
No damage through the digestive tract of the animals
Seeds characterized by coat imposed dormancy
High sugar(16%),protein(12%)-(Mohamed,2001)

Poor Water Management

Pods are float easily transported

•Flood water transport the seeds, poor irr facility cause poor proper water flow

- Lack of natural enemies
- Can grow in any type of soil

Wide range of dry tolerance, able to find water using its tap root during drought

Major Finding 3- What are the impacts of mesquite trees

infestation on the agriculture production of GAS

- Case 1-25% Canal capacity reductions.
- Assumptions-maintain the current water application of 987mm
- Consequences-irrigable land will reduces for 37,500 ha
- Yield/ton-remain the same 5 ton/ha(aquacrop simulations)
- Case 2-50% canal capacity reduction-worst scenarios in the same canal
- Assumptions-maintained the same water application of 987mm
- Consequences; irrigable land will reduced to 25,000 ha
- Yield/ton; 2.5ton/ha

Mesquite water consumptions							
	•	Number of tree per ha	Total consumption	water consumption			Total annual water consumption per total area
Gross consumption	18	952	17,143	6,257,143	42,600	730,285,714	266,554,285,714
Evapotransipiration			11,429		, i	486,857,143	
Net water			11,123	1,1,1,1,123		100,007,110	177,702,007,110
consumption(l/day)			5,714	2,085,714		243,428,571	88,851,428,571

Net water consumption(m3/yr) Net water consumption(Mm3/yr 88,851,428.57

88.85

✓ Mean Annual rainfall (mm/year)=180 ✓ Gash river annual flood flow(Mm³) as per 2010 data = 560

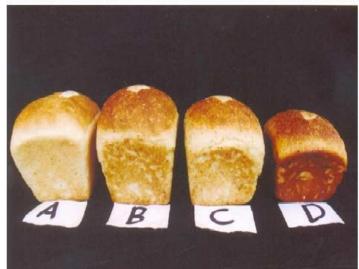
Major finding 4-How effective are the existing measures to

reduce or eradicate/control the infer

- Cutting the mesquite trees on the stem
- > Hand puling, hoeing, tilling up to 10 weeks
- use diesel and 2-4 D chemicals to eradicate and control the mesquite
- Planting Sorub/Kormot trees to overcome Mesquite
- Allowing bees to produces honey from mesquite

Major finding 5-What alternative measures could be

recommended


- Biological ,Physical and Chemical control (New Halfa scheme)
- Controlled management for productive use
- Charcoal productions (Afar scheme Ethiopia)
- Honey produces (India & Yemen)
- Increase agricultural areas(mesquite area for agriculture activities
- Bio fuel
- Biomass to generate power (Nema electricity power plant, Kenya)

Mesquite Cost Benefit analysis

 ✓ Area considered is irrigable area (42,600 ha)
 ✓ Only Sorghum crop considered for analysis
 ✓ Only Charcoal productions considered
 ✓ The rate of 1USD=5.67SDG was used

No	Item	Cost (USD)		Bene	efit(USD)
		per ha	per 42,6ooha	per ha	per 42,6ooha
1	Mechanical Removal	196	8,367,851		
2	Charcoal	2,082	88,699,286	2,946	125,517,857
3	Sorghum	875	37,286,964	1,719	73,218,750
4	Total	3,153	134,304,101	4,665	198,736,607
5	Total Net Pro	ofit		1,513	64,432,506

CONCLUSIONS

✓ Mesquite infestation has increased from 89,000 ha in 1979 to 142,000 ha in 2013- a 14% total increment

✓ Landsat MSS,TM and OLI have been reliable (mesquite invaded much on the canal, river banks and farm road sides)

Existing measure have been ineffective
Lack of land ownership (land tenure)

•Lack of institutional backing from central and local governments(Control has been disappointed due to luck of commitment and follow up from the state government

•Non connectivity between eradication/control program and benefit generated

✓ Mesquite has several uses to its credit

Salinity control, Land reclamation, Charcoal, Wood chips, Fodder, Bio fuel, Biomass to generate power, Honey and gum, Pods for animal food, Medicinal purposes, Timber, Fencing, bread productions

Recommendations

- Eradication and Control to maximize the income to citizens
- Cost benefit analysis -effective and is an essential component of a noxious mesquite management strategy
- Prevent Land rotation and promote long term permanent land user right
- High resolution satellites (ALOS, RapidEye, Meteosat, GeoEye, DigitalGlobe, ERDAS, ASTER 's) could be used to find and effecting the monitoring expansion of mesquite
- Coordinate national management programme that select the appropriate management procedures
- Regular monitoring and annual evaluations determine adequacy of the plan(a case study of New Halfa scheme)

