GTZ im TZ-Verlag

Nill, D.; Schwertmann, U.; Sabel-Koschella, U.; Bernhard, M.; Breuer,J.

Soil Erosion by Water in Africa

Principles, Prediction and Protection

Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Nill, D.; Schwertmann, U.; Sabel-Koschella, U.; Bernhard, M.; Breuer, J.:

Soil Erosion by water in Africa / Nill, D.; Schwertmann, U.; Sabel-Koschella, U.; Bernhard,M.; Breuer, J. [Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH].— Rossdorf: TZ-Verl.-Ges. 1996 ISBN 3-88085-514-5 (GTZ)

NE: Nill, D.; Schwertmann, U:

Published by:	Deutsche Gesellschaft für
	Technische Zusammenarbeit (GTZ) GmbH
	Postfach 5180
	D-65726 Eschborn
Printed by:	Typo-Druck Roßdorf GmbH D-64380 Roßdorf
Distribution:	Universum Verlagsanstalt GmbH KG Postfach, D-65175 Wiesbaden
TODN 2 00005 5	-14 5

ISBN 3-88085-514-5 ISSN 0723-9637

Contents

List	of tables			3		
List	of figures	5		5		
Prel	iminary n	ote		9		
1	Causes	Causes for soil erosion				
2	Damag	es cause	ed by erosion	15		
	2.1	Damag	ges in agriculture (on-site)	15		
	2.2	Off-site	e damages	20		
3	The ero	osion pr	ocess	22		
4	Soil los	s detern	nining factors	31		
	4.1	Rainfa	11	31		
	4.2	Soil pr	operties	35		
	4.3	Topogi	raphy	38		
	4.4	Cover,	tillage and protection techniques	40		
		4.4.1	Reduced tillage and notillage	41		
		4.4.2	Contouring	42		
		4.4.3	Soil cover by organic mulch	42		
		4.4.4	Inorganic mulch	43		
		4.4.5	Surface forming practices (contour ridging,			
			heaping, tied ridging, bedding etc.)	43		
		4.4.6	Bufferstrips	47		
		4.4.7	Contour bunds (stone bunds, earthen bunds,			
			diguettes)	48		
		4.4.8	Protective ditches	51		
		4.4.9	Terraces	53		
5			soil erosion	58		
6			soil erosion	69		
	6.1		Il simulator studies	69		
		6.1.1	Laboratory studies with simulated rainfall	70		
		6.1.2	Field studies with simulated rainfal	72		
	6.2	Runoff	² plots	75		
	6.3		n measurement within existing fields	76		
		6.3.1	Erosion nails	77		
		6.3.2	Sediment traps	79		
		6.3.3	Diverse techniques	81		
	6.4		ent yield from river basins	84		
7		-	ion with the Universal Soil Loss Equation	86		
	7.1	The ere	osivity of rain (R factor)	89		

7	.2	Soil erodibility (K factor)			
7	.3	The topo	graphic factor (LS factor)	111	
7	.4	The cove	er and management (C) factor	117	
7	.5	The effect of protective methods –			
			practice factor (P)	145	
			Contouring, contour-ridging, tied-ridging	145	
			Bufferstrips	153	
			Contour bunds and heaps	156	
			Ditches and terraces	158	
7	.6	Soil loss	tolerance limits	160	
Annex	1	Rainfall	and erosivity	163	
А	nnex 1	. 1	Erosivity for single sites	164	
А	nnex 1	.2	Erosivity regressions	168	
А	nnex 1	.3	National iso-erodent maps	171	
А	nnex 1	.4	Regional iso-erodent maps	177	
А	nnex 1	.5	National rainfall distribution maps	179	
А	nnex 1	.6	Rain volume and distribution for single sites	194	
А	nnex 1	.7	Estimation of the erosivity of the 10 year storm	210	
Annex	2	Slope lei	ngth and gradient	212	
A	nnex 2	. 1	Device for measuring slope length and gradient	213	
А	nnex 2	.2	Conversion of slope gradient in degrees to percent		
Annex	3	Cover a	nd management factor	215	
A	Annex 3	.1	Number of day in the year and corresponding date	216	
A	Annex 3	.2	Field methods for the measurement of mulch		
			cover and canopy cover	217	
А	Annex 3	.3	Growth curves for mono- and mixed crops	226	
Д	Annex 3	.4	Detailed C factors	230	
Annex	4	Protecti	on and management	257	
A	Annex 4	.1	Detailed support and management (P) factors	258	
A	Annex 4	.2	Some useful species for soil and water		
			conservation	263	
Literat	ture			269	

List of tables (short titles)

Table 21-1:	Sediment enrichment ratio for different grain	
	sizes on an Alfisol	17
Table 21-2:	Sediment enrichment ratio for organic carbon	
	and major nutrients under different cropping	
	systems	17
Table 3-1:	Mean runoff coefficients from natural rain	28
Table 42-1:	Soil loss on different barefallow soils	35
Table 42-2:	Soil properties influencing soil erosion	-36
Table 449-1:	Characteristics and applications for different	
	types of terraces	56
Table 5-1:	Soil erodibility of soils from different	
	parent materials	66
Table 64-1:	Annual suspended sediment load of African rivers	\$ 84
Table 71-3:	Erosivity and rain data for sites,	
	countries and regions	94
Table 72-1:	Soil loss and erosion depth under barefallow	100
Table 72-2:	Structure classes for use in the USLE	102
Table 72-3:	Permeability classes as used in the USLE	102
Table 72-4:	Determination of permeability class by profile	
	information	103
Table 72-5:	Runoff, soil loss and soil properties for the	
	three erodibility groups	107
Table 72-6:	Conversion of Keqa to Ktrop for soils in	
	group 1 and 2	110
Table 73-1:	Slope length exponent (m) for different gradients	112
Table 73-2:	Soil loss of slope segments	115
Table 73-3:	Example for the consideration of an irregular	
	slope with changes in soil erodibility in the USLE	116
Table 74-1:	Crop stages as defined for the USLE	117
Table 74-2:	C factor for a groundnut-maize system	119
Table 74-3:	Annual erosivity distribution for	
	Douala/Cameroon	121
Table 74-4:	Residual effects of savannah and forest fallows	127
Table 74-5:	Annual C factor calculated with the erosivity	
	distribution of sites from different climatic zones	
Table 74-6:	Average C factor for notill	130
Table 74-7:	Subfactor c2 for the effect of mulch cover	132

Table 74-9a:	Average C factors for forest, bush and grass vegetation 1			
Table 74-9b:	Alternative determination of C factor			
Table 74-10:	Average	C factors for banana	134	
Table 74-11:	Average	Average C factors for pineapple		
Table 74-12:	-	C factors for cassava	137	
Table 74-13:	•	s for miscellaneous perennial crops	138	
Table 74-14:	Average	C factors for groundnut	139	
Table 74-15:		C factors for maize	140	
Table 74-16:	•	s for millet and sorghum	141	
Table 74-17:	C factor	s for upland rice	143	
Table 74-18:	Average	C factors for miscellaneous crops	144	
Table 751-1:	P factor	for contouring	146	
Table 751-2:	Correcti	on of P factors for ridges with side slopes	150	
Table 751-3:		ctor for temporary established ridges	153	
Table 752-1:		s for bufferstrips as calculated by the RUSLE	156	
Table 753-1:		on factor for bunds on different slopes	158	
Table 754-1:	Sedimer	at delivery ratios for side-slopes	159	
Table 76-1:		Rates of soil weathering	161	
Table 76-2:		Tolerance limits proposed for tropical soils	162	
	Fable 11-1Annex: Erosivity and rain volume for single sites		165	
		Regressions for the calculation of erosivity	168	
		Annual rain volume and monthly distribution	194	
Table 34-1An	inex:	Detailed C factors for forest, bush and	220	
		grass vegetation	230	
Table 34-2An		Detailed C factors for banana	234	
Table 34-3An		Detailed C factors for pineapple	235 238	
Table 34-4An		Detailed C factors for cassava	238 243	
Table 34-5Ar		Detailed C factors for groundnut	245	
Table 34-6Ar		Detailed C factors for maize	243	
Table 34-7Ar		Detailed C factors for diverse crops	250	
Table 34-8Ar	nnex:	Detailed support and management factors	255	
		for notillage	255	
Table 41-1Ar		Detailed P factors for contouring	258 259	
Table 41-2Ar				
Table 41-3Ar	micx. Detailed I factors for mounds		260	
Table 41-4Ar		Detailed P factors for bunds	260	
Table 41-5Ar		Detailed P factors for bufferstrips	261	
Table 42-1A		Useful species for erosion control, etc.	263	
Table 42-2A	nnex:	Useful trees according to rainfall area	268	

List of figures (short titles)

Figure 1-1:	Causes at the origin of accelerated erosion	12
Figure 1-2:	Importance of activities which destroy the soil resource	13
Figure 21-1:	Impact of increasing bulk density on productivity	16
Figure 21-2:	Influence of soil erosion on potential productivity	18
Figure 21-3:	The vicious cycle of soil erosion	19
Figure 3-1:	Transpot capacity increases with runoff velocity	23
Figure 3-2:	Runoff velocity increases with gradient	24
Figure 3-3:	Runoff velocity as related to gradient	24
Figure 3-4:	A surface water layer decreases or increases soil loss	25
Figure 3-5:	Runoff generation on slopes with sealing and	
	permeable soils	27
Figure 3-6:	Infiltration as influenced by management and vegetation	29
Figure 3-7:	Rain volume per unit area and surface storage decrease	
	with increasing gradient	30
Figure 445-1:	Ridging, tied-ridging and bedding	44
Figure 445-2:	Influence of slope on height of heaps	46
Figure 447-1:	Contour bunds form small terraces after some years	49
Figure 447-2:	Permeable, semi permeable or impermeable bunds	49
Figure 447-3:	Dykes form deposits which are used for cultivation	50
Figure 448-1:	Diagram of drainage ditches and Fanya Juu terraces	51
Figure 448-2:	Hillside ditches facilitate access and transport	52
Figure 448-3:	Watershed conservation plan with hillside ditches	52
Figure 449-1:	Key parameters for terrace planning	54
	Different types of bench terraces	54
	Intermittent terraces can be transformed to bench terraces	55
Figure 449-4:	Orchard terraces in combination with individual basins	56
Figure 5-1:	Concepts of a peneplain and a pediplain	59
Figure 5-2:	Pediplains at different altitudes as formed in Cameroon	60
Figure 5-3:	Development of gullies from initiation to maturity	61
Figure 5-4:	Blockslide and translational slide	63
Figure 5-5:	Critical storm duration and intensity for landslides	64
Figure 5-6:	Sapre growth of trees caused by soil creep	65
Figure 5-7:	Runoff and suspended sediment load of watersheds with	
	different vegetation	67
	Diagramm of a flume for laboratory rainfall simulation	71
	Set-up for rainfall simulation tests in the field	73
Figure 612-2:	Runoff/soil loss diagramm for a dry- and a wet-run	74

Figure 62-1:	Divider	tank system and Coshocton wheel for the			
	measure	measurement of runoff and soil loss			
Figure 631-	1: Set-up o	f erosion nails on a slope	78		
Figure 631-2	2: Measure	ment of nail height with a slide calliper	79		
		Sediment trap for measurement of runoff and soil loss			
Figure 633-	1: Calculat	Calculating the time since exposure of tree roots			
		ng the height of lost soil by exposed tree roots	83		
Figure 64-1:		Relationship between watershed drainage area and			
e		t delivery ratio	85		
Figure 71-1:	: Strip cha	art of a 20 mm storm	-90		
Figure 71-2:	: Correcti	on of erosivity for the effect of water mulch	93		
Figure 72-1:	Change	of soil erodibility with cumulative erosivity	100		
Figure 72-2:	: Compari	son of calculated and measured soil erodibility	103		
Figure 72-3:	: Measure	d and predicted erodibilities after application			
		minant functions	105		
Figure 73-1:	<u> </u>	for the determination of LS factors	113		
Figure 73-2:		es for the determination of erosive slope length	113		
Figure 74-1		nual erosivity distribution for coastal, inland			
		hern Cameroon	122		
Figure 74-2		e of mulch on soil loss	125		
Figure 74-3		or as influenced by canopy cover and crop height	126		
Figure 74-4		for different banana densities	135		
		s for different ridge heights	147		
		s for the 10 year storm volume	148 155		
		s for riparian bufferstrips of different widths			
Figure 11-1		Error as caused by linear extrapolation of erosivity	211		
Figure 17-1		Storm erosivity as related to storm volume Water level for measurement of slope-length	211		
Figure 21-1	Annex:	and gradient	213		
D' 20.1	A	Mesurement of cover by the meterstick method	217		
Figure 32-1		Cord and knot method for cover measurement	218		
Figure 32-2		Marking out an area with different devices	219		
Figure 32-3		Selected coverages for the calibration of the eye	220		
Figure 32-4		Sighting frame for measurement of canopy and			
Figure 32-5	Annex:	mulch cover	221		
E'	A	Observation error as influenced by plant height	221		
Figure 32-6		Modified sighting frame for errorless	اخت		
Figure 32-7	Annex:	coverage and cover height measurements	222		
P	A	Sighting frame with mirror for tall crops	224		
Figure 32-8	Annex:	Signung frame with millior for tail crops	224		

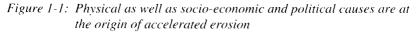
Figure 33-1Annex:	Canopy cover of Bambara nut, canavalia and cowpea	227
Figure 33-2Annex:	Canopy cover of cassava, cassava/maize	
	mixcrop and pigeon pea	227
Figure 33-3Annex:	Canopy cover of cotton, sunflower and tobacco	228
Figure 33-4Annex:	Canopy cover of groundnut and soya	228
Figure 33-5Annex:	Canopy cover of maize, rice and sorghum	229
Figure 33-6Annex:	Canopy cover of tea	229

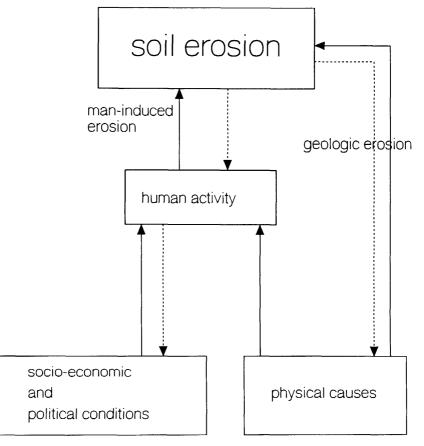
Preliminary note

Enhanced soil erosion research in Africa looks back on about 25 years of experimentation and recording with respect to soil loss prediction. A lot of information was gathered during this time which led to contradictory results about the applicability of the Universal Soil Loss Equation (USLE). This book tries to synthesize the latest knowledge and to evaluate it for practical soil loss prediction. This meant the gathering of a lot of data in tabular and graphic form which might be cumbersome for some readers. Nevertheless, we hope that it will be helpful to have these data assembled in order to save time for searching in many different journals which often can hardly be obtained locally. The ultimate aim of the book is to help understand the processes, to make the reader sensitive for recognizing them in the landscape and to allow him to quantify of the influence of agronomic measures on soil loss rather than to give detailed technical data and sketches.

People starting to get occupied with erosion problems will find basic knowledge about processes and effects and the necessary literature for more details. The book is also thought as a help for people concerned with the planning and realization of soil conservation activities. It allows to detect areas of high erosion risk which in turn facilitates the allocation of conservation efforts. The absolute results of calculations can be subject to substantial error whereas the relative differences between single measures are comprehensible. However, if a process varies in magnitude by a factor of 1000 (soil losses can be as small as 0.1 t/ha and as large as several 100 t/ha), an estimate which is wrong by a factor of 2 (= 100% error) is still a reasonable estimate. At the same time, this means that projects and research should continue to improve and enlarge the database in order to improve estimates. For this reason, the authors would appreciate to receive further data on measurements.

In Chapters 1 to 6 the reader finds descriptive information about causes, damages, processes, recognition and measurement of soil erosion. Chapter 7 is dedicated to soil loss prediction with the USLE. For the pure technical procedure of soil loss prediction the reader can refer to Chapter 7.


1 Causes for soil erosion


Soil erosion is a process acting over tens and hundreds of years. Its effects are normally only obvious, if they become disastrous. Until now, research focused on the physical causes of erosion. However, frequent failures of soil conservation projects showed that the causes were much more complex. A FAO study revealed that the lack of adoption of new conservation practices was a major reason for project failure even though technically sound practices were used (Hudson, 1991). Today, it has largely been agreed upon that soil conservation will not be successful in many countries even by using the best available practices if man and the social, economic and political context are not considered. Fones-Sundell (1992) summarized the problem very pointedly by saying: 'Neither engineering nor biological measures alone can eradicate erosion in a socio-economic system which makes non-optimal use of natural resources a necessary and often profitable form of behaviour for the individual.'

The cause-effect diagram in Figure 1-1 illustrates the problem of soil erosion. Soil erosion as caused alone by natural, physical factors (climate, soil, topography) is known as 'geologic' or 'normal' erosion (Bennett & Chapline, 1928). It is small enough to allow the sustainable growth of a natural eco-system. Geologic erosion ranges from several hundred kilograms per hectare for tropical bush and grass vegetation to below 100 kg/ha for tropical forest (Nill, 1993; Roose, 1975). Soil formation in the tropics is supposed to be in the same range. According to measurements in Central Africa, 150 to 400 kg/ha of new soil is formed each year (Owens, 1974). Dunne et al. (1978) found an annual formation rate of 150 to 300 kg/ha in Kenya whereas Kaye (1959) reported a rate of 15 t/ha on limestone in Puerto Rico¹.

Soil loss becomes critical if socioeconomic and political factors favour erosion (man-induced erosion). The main factors are:

¹ more details about soil formation rates are given in Chapter 7.6.

Poverty of the farmers:

Small farmers are obliged to cultivate their land as often as possible in order to assure their subsistence. The lack of capital hampers the application of intensive conservation measures and the use of inputs to restore soil fertility. Decreasing soil fertility leads to the extension of the cropping area, soil mining and finally migration of the farmers. It is estimated that deforestation proceeds thirty times faster than reforestation (FAO, 1991). Overgrazing, deforestation and agricultural use are major factors for soil destruction (Figure 1-2).

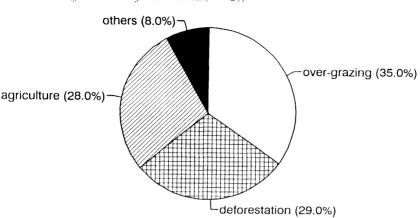


Figure 1-2: Activities which destroy the soil resource (from Mostafa & Osama (1992))

Unbalanced population density:

Overpopulation usually is detrimental for the soil resource. Overpopulation is not only the result of a high population growth. Latest developments suggest that regional overpopulation is often due to migration caused by streams of refugees from wars or environmental disasters. For example, during the Sahel drought of the early 70s, 1 million Burkinese equal to one sixth of the countries population, left their homes (FAO, 1990).

Underpopulation also causes serious damage. Vogel (1988) described the deterioration of a traditional terraced agro-system in Yemen after the migration of the rural population to neighbouring countries. Soil conservation works in India were often abandoned due to the recruitment of the Gurka, which were the more active in soil conservation, into the British Army (Blaikie, 1985).

The institutional frame:

Government institutions insufficiently control the use of natural resources. The lack of defined conservation policy and laws to regulate the use of land, to define the ownership and to facilitate the commercialisation of goods prevents farmers to apply soil conserving production methods. Politicians often give priority to short term benefits from export crops on the expense of soil conservation. Extension and conservation services are mostly inadequately equipped and trained and suffer from a lack of coordination (Sheng, 1989).

The land tenure system:

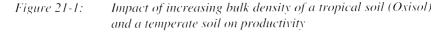
Only farmers who own their land or have secure access to their land for a long time are interested in longterm maintenance of this resource. Restricted access to fertile land for social groups or family members (e.g. young people, women) leads to the exploitation of steep slopes and marginal, fragile soils. The traditional heritage system sometimes favours an extensive fragmentation of the land which obstructs the adoption of conservation practices.

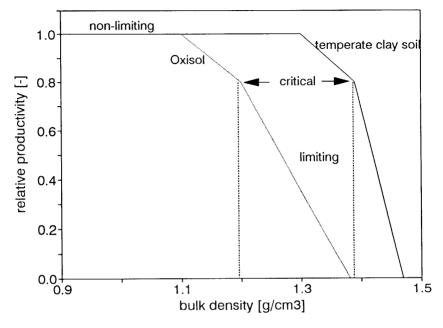
Tradition, believes and illiteracy:

The degree of illiteracy influences the adoption of new conservation practices and other cultural techniques. Small farmers commonly perceive erosion as a natural process and are not aware about its influence on productivity. Lack of knowledge exists along with effective local conservation methods (Tato & Hurni, 1992). The adoption of new practices always needs an effort and includes some risks. Farmers, as most other social groups, need time to adopt new ideas.

It is wrong to conclude from these comments that measures should be solely applied according to the socio-economic and political conditions. Soil loss by erosion is irreversible. Therefore, conservation activities can not be delayed until socio-economic and political conditions are favourable. Conservation thinking and conservation activities must proceed simultaneously.

2 Damages caused by erosion


Surplus rain water leaving a field on the soil surface is called runoff. Runoff first causes damage on the field (on-site damage) by entraining fertile topsoil and by reducing the available amount of water for plant growth. Once left the field, the runoff is enlarged from adjacent fields and may enter rills, ditches, small rivers, passes lakes and streams and finally reaches the ocean. On its way, sediment is picked up and deposited which causes further damage outside the fields (off-site damage). Both, on-site and off-site damage need to be considered in order to assess the overall economic and ecologic effect of erosion.


Soil conservationists intend to protect the diverse functions of soils. Functions like infiltration and storage capacity of a soil to prevent floods and its filter function to purify water are of major concern for the urban environment. In the rural environment, however, it is soil fertility.

2.1 Damages in agriculture (on-site)

Soil productivity depends on a number of physical, chemical and biological soil properties. The most important physical ones are texture, structure and depth of the profile. They determine the amount of water and air stored in the soil, its capability to infiltrate and conduct water, its possibility for root growth and the fines which can bind and deliver nutrients to the plant roots. In well structured, deep soils even heavy storms infiltrate. Structural damage on some tropical soils is more severe than on temperate soils as shown by the influence of bulk density on relative productivity (Figure 21-1). Profile depth and surface soil depth determine the water storage and the volume for water and nutrient uptake of the roots.

The chemical fertility depends on the amount of available nutrients in a soil which is governed by soil pH, organic matter content and other characteristics. These are greatly influenced by parent material and the conditions under which a soil was formed as well as by its use.

Soil organic matter (SOM) and biological activity improve physical and chemical soil properties. The organic matter content of a soil is a function of soil climate (humidity, temperature, oxygen) and the supply of organic residues. The surface soil of most tropical soils contains between < 1 and 6% SOM which, besides a large number of other functions, stores a major part of the plant available nutrients and stabilizes soil structure.

Soil erosion is a major reason for soil degradation. The texture of a soil generally becomes coarser because runoff preferably removes medium to fine particles like small aggregates, silt, dispersed clay and organic matter (selective erosion). Sabel-Koschella (1988) showed on an Alfisol in Nigeria that clay (< 0.002 mm) and silt (0.002-0.05 mm) are enriched in the sediment (Table 21-1).

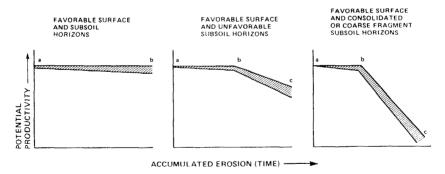
treatment		grain size [mm]						
	< 0.002	0.002-0.05	0.05-0.125	0.125-0.25	0.25-0.5	0.5-1	1-2	
barefallow	1.6	1.6	0.	81.0	0.9	0.6	0.8	
plow	2.3	2.6	0.8	0.7	0.7	0.5	0.4	
traditional	1.2	1.6	0.7	0.9	0.9	0.9	0.9	
notill	1.5	1.0	1.2	0.9	1.0	0.9	0.8	
mean	1.7	1.7	0.9	0.9	0.9	0.7	0.7	

Table 21-1: Sediment enrichment ratio² for different grain sizes as measured on an Alfisol in Nigeria (Sabel-Koschella, 1988).

The enrichment of the fine soil fraction in the sediment accounts for the higher nutrient contents of the eroded sediment as compared to the original soil. Allison (1973; in Bouwman, 1989) reported a sediment enrichment ratio between 1.3 and 5 for soil organic carbon. Aina et al. (1979) demonstrated the enrichment of organic carbon and major nutrients under different cropping systems (Table 21-2).

Table 21-2: Sediment enrichment ratio for soil organic matter (SOM) and major nutrients under different cropping systems in Nigeria (Aina et al., 1979).

SOM	Ν	Р	K	Ca	Mg
1.5	1.4	1.1	0.8	1.7	1.8
1.4	1.3	0.9	0.9	1.2	1.3
1.4	1.4	1.4	0.7	1.2	1.2
1.3	1.1	1.2	0.6	1.2	0.9
1.1	1.0	1.4	1.0	1.0	1.1
1.3	1.2	1.2	0.8	1.3	1.3
	1.5 1.4	1.5 1.4 1.4 1.3 1.4 1.4 1.3 1.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


The impact of soil erosion on production depends on the depth of the arable layer and the quality of the underlying horizons. Soil erosion is more detrimental the shallower the soil, this being aggravated in areas of irregular rainfall.

² sediment enrichment ratio = (percentage of a grain size class in the sediment) / (percentage of the size class in the original soil)

Loss of fertile topsoil is most harmful on extremely leached Ultisols and Oxisols of the humid tropics where the subsoil contains very low amounts of nutrients and SOM compared to the less leached soils of the drier areas. SOM counteracts P fixation which explains why P fixation increases with increasing topsoil loss. Mbagwu et al. (1984) showed that the removal of 5 cm of topsoil reduced maize yield by 95% on a leached Ultisol but only by 52% on a less leached Alfisol. Maize died off at 30 cm height on an Ultisol in Cameroon which had lost its topsoil during 5 years of barefallow (Nill, 1993).

Some crops tolerate erosion better than others. Lal (1976a) measured 52% less maize yield but only 38% less cowpea yield if 10 cm of surface soil were stripped off. Yield decreases are generally in the order gramineae > grain legumes > tuber crops (El-Swaify, 1990).

Figure 21-2: Influence of soil erosion on potential productivity as related to soil type (Pierce et al., 1983)

The extent to which soil erosion effects productivity depends on the depth-distribution of fertility parameters in the profile (Figure 21-2). A deep and homogeneous soil acts with a slow productivity decline with increasing erosion whereas yields drop sharply with increasing soil loss on soils with unfavourable subsoil properties.

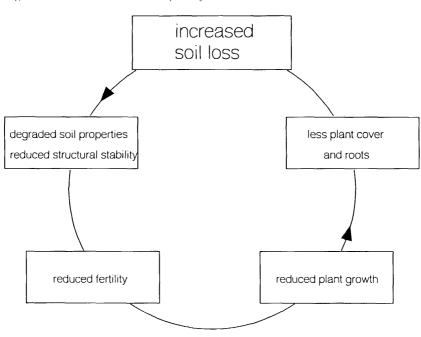


Figure 21-3: The vicious cycle of soil erosion

The economic damage of soil erosion is alarming. In Zimbabwe it is estimated that farmers loose three times more nitrogen and phosphorus by erosion than they apply to their fields. 20 to 50 US \$ on arable land and 10 to 80 US \$ on grazing land would be necessary to substitute these nutrient losses by fertilizer (FAO, 1990). It must be stressed that most erosion damages can hardly be cured (e.g. compaction, structure) or are completely irreversible (e.g. water holding capacity).

Damages to agricultural productivity are not only caused by degrading soil properties but also by direct impact of runoff. Roots and seeds are washed out of the soil. Seeds and seedlings on the foot-slopes are buried by the deposited sediment. Rills and gullies hamper access to the fields, impede farm operations and transport. Deep rills and gullies form drainage systems which drain the adjacent areas and lead to considerable loss of water. Loss of soil fertility by soil erosion is a self-enhancing process. Soil erosion reduces structural stability and soil fertility. Reduced structural stability decreases infiltration and may increase the amount of transportable material. Reduced fertility causes poor plant growth, canopy cover and root soil interactions. In turn, runoff and soil loss are accelerated (Figure 21-3).

2.2 Off-site damages

Part of the surface runoff and the suspended sediment leave the fields and grazing lands and are concentrated in the surficial drainage system. Depending on the transport capacity of the flow, sediment is picked up or deposited. Rills are widened to gullies, channels are deepened (channel erosion) and stream banks are undercut (stream bank erosion). Ditches, roads and bridges are damaged. The fast runoff leads to a loss of water from the landscape and results in a large fluctuation of the rivers. Some rivers start to become only seasonal. The groundwater table is lowered which affects the vegetation and causes water shortages in wells.

Downstream sedimentation silts up irrigated fields, ditches, channels, dams and harbours. In areas with intensive agriculture, pesticides and nutrients dissolved in runoff or attached to the sediment become a serious problem. Disasters at this extent are difficult to quantify but national economies suffer important expenditures for their restoration.

The amount of sediment transported by some streams can be enormous. For example, the river Perkerra in Kenya receives an average of 195 t per year from each hectare of its 1310 km² large watershed (Dunne, 1975 in: Walling, 1984), corresponding to an average lowering of the watershed by about 15 cm in 10 years. Dam heights on three of Morocco's dams had to be increased in order to maintain the storage capacity. In order to preserve the current water storage capacity in Morocco, one new dam with 150 million m³ needs to be constructed each year (FAO, 1993).

The frequent flood disasters in India are another well-known example. They are explained by the deforestation of the Himalayas. Sediments of the Brahmaputra and Ganges river in India have formed a 50000 km³ large shallow in the Gulf of Bengal. The Kosi River in Bihar/India has buried 15000 km³ of fertile land with gravel and sand (Kollmannsperger, 1979).

Studies on the west-coast of Sumatra showed that the sediment load of the rivers which was increased by deforestation, mining and channel

construction led to the destruction of the coral riffs off-shore (Hettler, 1994). Riffs are rich fishing grounds and help to protect the coast line. These are some examples, out of a large number which could be cited here, in order to show the importance of off-site damage.

Present investments into soil conservation efforts are small compared to the immense investment in civil engineering aiming to repair the results of erosion. It is supposed that investing in soil conservation would have a higher cost-efficiency ratio and would protect both the soil resource and the down-stream areas and facilities.

3 The erosion process

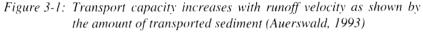
Soil erosion can be regarded as a result of four processes (Foster & Meyer, 1972):

- detachment by raindrop impact
- transport by raindrop impact (splash erosion)
- detachment by the shearing forces of flowing water
- transport in surface runoff (sheet or interrill erosion, rill and gully erosion)

Rain falling on a soil causes increasing water saturation or/and the formation of a seal at the soil surface. As a result of both processes, infiltration into the soil is decreasing. Water on the soil surface occurs as soon as rain intensity exceeds the infiltration rate. Before any runoff can occur, a small amount of water is needed to humidify the soil surface (detention storage). Once the detention storage is filled up, ponding occurs in the small depressions and irregularities of the soil surface (surface roughness) which form the retention or depression storage. Overflow of some depressions provides excess water to the ponds underneath. These, if filled up, in turn spill their water further down-slope. Thus, more and more water is moving down-slope which may concentrate, dig out rills of increasing size and finally may cut deep gullies into the soil.

The amount of surface runoff (SRi) during a storm can be expressed as:

SRi = Pi - (I + DS + RS)(1)


with	Pi	rain volume of storm i [mm]
	Ι	infiltration [mm]
	DS	detention storage
	RS	retention storage

Sheet and splash erosion occur in areas of shallow sheet or interrill flow (few millimeters deep) whereas rill erosion is caused by concentrated rill flow. In the rills, fine sediment is transported as suspended load whereas coarser particles are dragged along as bedload.

³ per definition rills can be closed by normal farm operations.

The amount of transported soil and the size of particles depends on the transport capacity of the flow. For a flow of given width, the transport capacity increases with increasing flow velocity (Figure 3-1) and flow depth. Both depend on slope.

If the overland flow on a smooth surface is regarded as a water sheet with a certain depth and velocity, a unit volume of water can be picked out as an element with a defined weight (w) (Figure 3-2). W equals a force with a down-slope component fl parallel to the slope and a component f2 perpendicular to the slope. The down-slope force f1 increases with gradient and speeds up the velocity of the element. In the Manning formula which is widely used to calculate flow velocities in channels, velocity augments as a function of the 0.5 power of slope (Figure 3-3) whereas transport capacity increases with the cube of flow velocity (Engelund & Hansen, 1967).

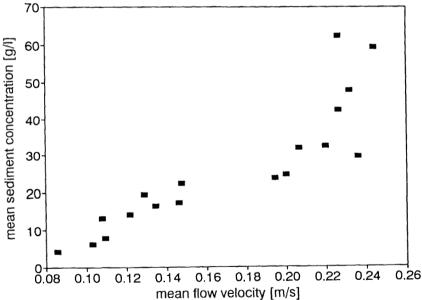


Figure 3-2: Runoff velocity increases with increasing gradient due to the down slope force (f1) which is a component of the weight (w) of a unit volume water

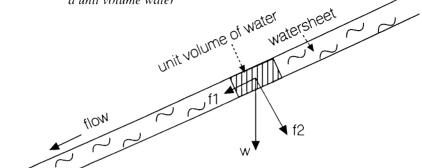
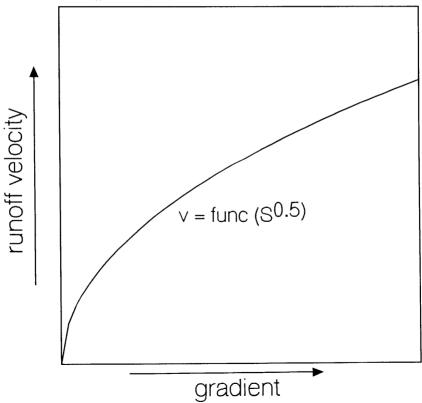
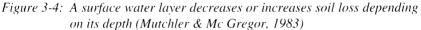
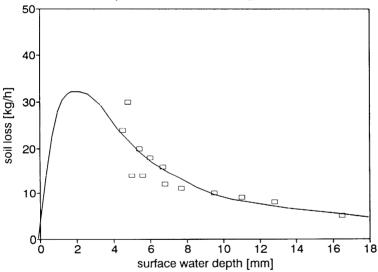





Figure 3-3: Runoff velocity as related to gradient

Flow velocity is not equally distributed over the depth of the flow. In a laminar flow, velocity (v) increases to the square of depth (d) (Horton et al., 1934) which means that the water layer at the water surface is much faster than the layer close to the soil. This velocity distribution causes a force which lifts up soil particles from the ground and transport them. Depending on their size, they are either rolled and dragged along the soil surface as bed load or lifted up into the flow and transported as suspended load. In the shallow sheet flow, velocity is small. However, soil loss is enhanced by the energy supplied by the pounding rain drops. The drop impact causes turbulence in the flow. Particles are heaved up, settle down and are heaved up again, thus, being transported towards the rills. In experiments of Mutchler & McGregor (1983), maximum soil loss occurred in flow depths of 2 mm (Figure 3-4).

Flow depth in rills is generally deep enough to minimize the influence of raindrop action. The amount of soil loss in the rills, therefore, depends almost solely on the shearing forces of the flow and the saturation of its transport capacity. If the transport capacity of the rill flow is saturated with sediment from the interrill areas, the rills do not deepen. If the sediment concentration is smaller than the transport capacity, the flow picks up more sediment from the rills.

Runoff is distinguished into two basic flow patterns attributed to differences in runoff generation. Horton flow occurs if runoff is caused by a rapid sealing of the soil which limits infiltration right at the surface (Horton et al., 1934). Dunne flow occurs if runoff is caused by saturation of the soil profile due to excess of rain, dense layers or shallow soil depth (Dunne 1978). Horton flow is characteristic for structurally weak soils which have enough fine earth to form a seal. Infiltration is rapidly decreasing after the onset of a rain even though the subsoil may still be dry. The runoff coefficient may reach 70 to 80% for single rains. Soil loss is limited by the amount of available sediment rather than by transport capacity. Dunne flow is characteristic for structurally stable soils rich in oxides, clay and organic matter. High infiltration rates can be maintained until the soil becomes saturated. Even if enough sediment of transportable size is available at the soil surface, soil loss is limited by runoff. Transport by splash erosion becomes more important.

Rain falling on a slope causes either runoff from almost the entire slope (sealing soils with Horton flow) (Figure 3-5a) or only from part of the slope (soils with high infiltration rate and Dunne flow) (Figure 3-5b). Close to the upper slope end, runoff, even if present on structurally weak soils, is still too small and slow to transport soil. On structurally stable soils runoff seldom occurs on the upper part of the slope. It infiltrates into the soil and proceeds vertically or laterally in the soil. The lateral or interflow may add to soil saturation of the area further down-slope where runoff starts. Thus, runoff on both soil types but more so on soils with Dunne flow, leaves a 'zone of no sheet erosion'. Soil profiles on the watershed boundary are,therefore, relatively uneroded and can sometimes be used as a reference for the extent of erosion damage on the mid and down slopes.

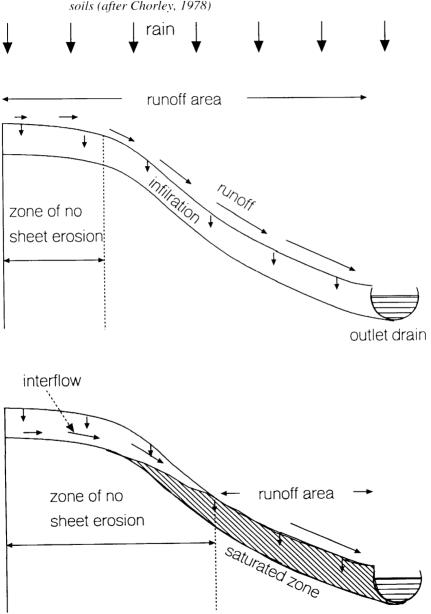


Figure 3-5: Runoff generation on slopes with sealing (a) and permeable (b) soils (after Chorley, 1978)

The runoff volume produced by a rain depends on rain properties as well as soil and vegetation properties. Roose & Piot (1984) measured mean runoff coefficients (RC) of 20 to 40% and as high as 70% for individual storms. In own experiments with natural rain, RCs varied between as much as 30% on an Alfisol to as little as 1% on an Oxisol. Small rains of 2-3 mm could already generate runoff on sealing soils (Table 3-1) (Nill, 1993). Runoff starts on some soils only some minutes after the beginning of rain. Pontanier et al. (1984) found 1 to 4 min of artificial rain sufficient to generate runoff on hard setting soils ('sols hardés'), 2 to 20 min on Vertisols and 5 to 20 min for Ultisols. However, on the Acrustox shown in Table 3-1, 1.5 hours of rain with an intensity of 64 mm/h did not cause any runoff.

Table 3-1:	Mean runoff coefficients from natural rain on seven soils
	(Nill, 1993)

soil	number of storms	runoff coefficient	smallest runoff generating storm
	[-]	[%]	[mm]
Paleustalf	81	30	2
Andisol	451	18	3
Kandiudalf	320	18	3
Trophumult	249	15	3
Tropudult	357	11	5
Hapludult	135	11	3
Acrustox	135	1	7

Soil covered by vegetation generally infiltrates more water than uncovered soil. Sabel-Koschella (1988) measured a 7 times higher infiltration volume under a natural savannah grass fallow (1410 mm/h) compared to a sealed barefallow (210 mm/h) (Figure 3-6). If plowed and cultivated, the same soil infiltrated 450 mm/h.

With increasing area, the total runoff volume becomes more. As shown for plots of 70 to 550 m^2 (Mutchler & Greer, 1980) and watersheds between 0.1 and 100 km^2 (Dunne, 1978), runoff per unit area becomes smaller with increasing watershed size due to longer travelling time of the overland flow. The longer the flow stays within the watershed the more water and soil can be retained in depressions or infiltrate.

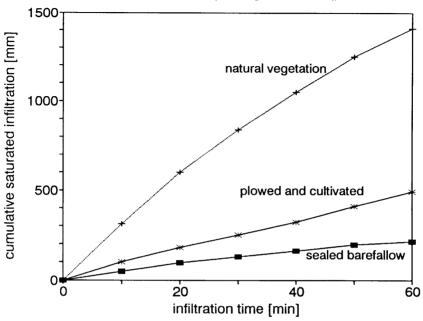
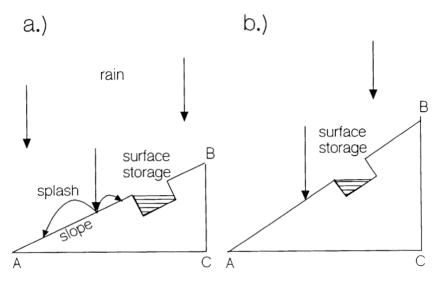



Figure 3-6: Infiltration as influenced by management and vegetation

Experiments on the influence of gradient and slope-length on runoff led to varying results. The trials showed more, less or unaffected runoff volumes with increasing slope. In seven out of eight studies in the US, for example, annual runoff volume increased logarithmical with gradient, whereas slope length had no effect on the amount of runoff per unit area (Wischmeier, 1966). One reason for a positive relation between slope and runoff is the decreasing surface retention with increasing slope comparable to a cup of water which is more and more inclined (Figure 3-7). In contrast to these results in the US, Poesen (1984) measured less runoff with increasing slope on sealing soils. The compaction of the soil by impacting drops is less because the impacting force does not act perpendicular to the surface and the number of drops per unit area is smaller (Figure 3-7). Thus, on steep slopes surface sealing is weaker and runoff can be smaller than on gentle one's. Additionally, the number and depth of rills were higher on the steep slopes. The rills dissected the seals and enlarged the infiltrating surface area. Figure 3-7: Rain volume per unit area and surface storage decrease on the slope of length AB with increasing gradient. Splash is always transported further downslope than upslope

4 Soil loss determining factors

4.1 Rainfall

One driving force for water erosion is rainfall. The raindrops which pound on the soil surface either infiltrate into the soil or leave the field as surface runoff. The rain volume which runs off on the soil surface not only depends on the properties of the soil, vegetation and topography, which will be discussed in the subsequent chapters, but also on the quantity, distribution and type of rain. Investigations showed that soil loss is largely determined by rain volume, energy load, intensity and their distribution within single storms (Flanagan et al., 1988) and during annual seasons (Lal, 1990).

An example for the last effect was given by Temple (1972) who noted 8 times more runoff from a rain at the end of the rainy season compared to a similar rain at the beginning of the rainy season.

Kinetic energy (E) of a storm is calculated by (Morgan, 1986):

$$E = 1/2 * mv^2 (J)$$
 (2)

with m mass of falling rain [kg] v terminal velocity of the falling drops [m/s]

Terminal velocity of raindrops increases with diameter to a maximum of 9 to 10 m/sec for the largest drops which have diameters of about 6 mm (Gunn & Kinzer, 1949; Laws, 1941; Laws & Parsons, 1943). Drop diameter increases with increasing storm intensity up to intensities between 76 and 100 mm/h (Carter et al., 1974; Hudson, 1963). Pressures between 2 and 6 MPa are exerted to the soil for very short times (50 ms) when a rain drop hits the soil surface (Ghadiri & Payne, 1981). This pounding action destroys aggregates, displaces particles (splash erosion) and has a sorting effect which leaves a thin layer of coarser particles at the soil surface. Thin water layers of 14 to 30% of the drop diameter in thickness enhance splash erosion whereas thicker layers protect the soil (water mulch) (Mutchler & Young, 1975).

Tropical rains are characterized by high and distinct intensity peaks. Maxima of up to 800 mm/h are reported from Jamaica (El-Swaify & Dangler, 1982). For northern Nigeria, Kowal & Kassam (1977) measured common peak intensities of 120 to 160 mm/h and showed that mean drop diameters where higher in tropical storms than in temperate areas. From western Nigeria, intensity peaks of 190 mm/h are reported (Wilkinson, 1975). Peaks occurred during the first five minutes in more than half of the storms. Hudson (1961) measured peak intensities of up to 340 mm/h in southern Africa. The erosivity of storms may additionally be enhanced by strong winds (Lal et al., 1980). In convective storms high windspeeds commonly coincide with intensity peaks (Raussen, 1990).

In order to predict soil erosion, Wischmeier & Smith (1958) found out that the product of a storms total kinetic energy (E) times its maximum 30 minute intensity (I_{30}) is linearly related to soil loss:

$$R = \sum_{j=1}^{m} (E * I_{30}) [N/h]$$
(3)

and

J-	1	
$E = \sum_{i=1}^{n} E_{i=1}^{n}$	$(11.89 + 8.73 \log l_j) * P_j 10^{-3} [kJ/m^2]$	(4)

with	R	longterm mean annual erosivity [N/h]
	Е	kinetic energy [kJ/m2]
	I ₃₀	maximum storm intensity during 30 min [mm/h]
	I	intensity for storm interval i [mm/h]
		for 0.05 < I < 76.2 mm; for I > 76.2 mm I = 76.2 mm
	P _i	rainfall volume during interval i [mm]
	n	number of storm intervals with equal intensity [-]
	m	number of erosive storms per year [-]

The R factor of Wischmeier & Smith (1958) has proven appropriate for temperate areas. For tropical Africa, however, several constraints are to be faced. The calculation of reliable R factors depends on daily rainfall records over 22 year periods (Wischmeier & Smith, 1978). The necessary subdivision of individual storms into intervals of similar intensity and the recognition of the maximum 30 min intensity asks for self-recording raingages with low paper feed rates. These data are normally not available for a sufficient number of years and meteorological stations. The R factor overestimates large storms which cause only little runoff but underestimates small storms with much runoff (Foster et al., 1982; Laflen et al., 1985). Both occur frequently on tropical soils. Therefore, other authors proposed a number of different erosivity indices for tropical areas, which were either easier to calculate or which can be better applied to the local conditions. Fournier (1962) developed an index for river basins in West Africa:

$$C = \frac{Pm^2max}{P_{ann}}(mm)$$
(5)

where P_{ann} is the annual amount of rainfall and Pm_{max} the rainfall amount during the wettest month. A regression of a modified version of Fournier's index with the R factor was used by FAO for the design of an iso-erodent map of Africa north of the equator and the Middle East (Arnoldus, 1978).

For southern Africa, Hudson (1986) reported that only intensities above 1 inch/h (25.4 mm/h) caused significant splash. Therefore, his index KE>1 considers only the energy of rain falling at intensities > 25.4 mm. For the calculation of kinetic energy he used:

KE = 29.8 -
$$\frac{127.5}{1} \left[\frac{J}{m^2 * mm} \right]$$
 (6)

with I storm intensity [mm/h]

The energy term as calculated by Kowal & Kassam (1977)

$$E_i = 41.4 P_i - 120 [\frac{J}{m^2}]$$
 (7)

with P_i storm volume [mm]

described soil loss better than EI_{30} (Salako et al., 1991).

Delwaulle (1973) simplified the calculation of crosivity by substituting rainfall energy by rainfall amount (P_i) and Lal (1976b) additionally used shorter intervals for the maximum intensity (I_{max}):

$$EI_{30i} = Pi * I_{max} (mm^2/h)$$
(8)

For I_{max} he chose the maximum 7.5 min intensity. Sabel-Koschella (1988) obtained similar results for m values between 5 and 25 min.

Roose (1977) evaluated mainly 13 stations in West Africa and found a linear regression between the EI_{30i} and monsoon type rainfall (P_i) between June and September of:

$$EI_{30i} = 1.001 P_i - 10.004 [N/h]$$
(9)

and a curvi-linear regression for high intensity storms during the rest of the year. As an empirical approach for the estimation of erosivity in West Africa he proposed:

$$\mathbf{R} = (0.85 \ (+/-) \ 0.05) \ * \ Pann \ [N/h]$$
(10)

Roose (1977) verified his regression for 20 rainfall stations and drew an iso-erodent map of West Africa. Further iso-erodent maps were compiled for Zimbabwe, Kenya, Tanzania and Uganda based on KE > 1 (Moore, 1979; Stocking & Elwell, 1976). An iso-erodent map for Zambia was supplied by Lenvain et al. (1988) using:

$$EI_{30} = 10.5 Pm - 7.03 b + 5.74 c - 1.04 [N/h]$$
 (11)

with	Pm	mean monthly rainfall [cm]
	b	mean number of days with rains > 1 mm [-]
	с	mean maximum daily rainfall per month [cm]

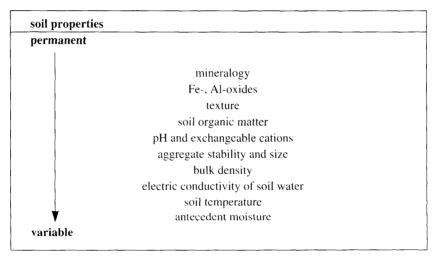
For the iso-erodent map of South Africa (Smithen & Schulze, 1982) erosivity was estimated by 'effective rainfall', a modified Fournier's Index and a 'burst factor'.

4.2 Soil properties

The influence of soil properties on soil loss can be ideally studied on runoff plots stripped from all vegetation for some years. Thus, it is assured that no influences of the former vegetation bias the results. Table 42-1 demonstrates the influence of soil properties on barefallow soils subject to 1200 mm/a.⁴ Soil losses are as low as < 1t/ha on an Oxisol and as high as 280 t/ha on an Andisol (Nill, 1993).

Table 42-1: Soil loss on different barefallow soils corrected to an annual erosivity of 800 N/h (approx. 1200 mm/a).

soil type (US soil taxonomy)	mean annual soil loss[t/ha]	
Acrustox	0.5	
Tropudult	12	
Trophumult	20	
Hapludult	57	
Kandiudalf	89	
Paleustalf	147	
Andisol	280	


However, the soil properties causing these differences are not evident as mostly a range of soil properties found in different soils and their combination are responsible. The important soil properties decisive for the extent of erosion are listed in Table 42-2.

Mineral composition, especially the content of metal oxides, is known to influence soil crodibility. Metal oxides act as binding agents between soil particles, thus increasing structural stability. Soil loss on subsoils decreases with increasing content of Al- and Fe-oxides (Roth et al., 1974; Römkens et al., 1977). It is supposed that especially the amorphous part of the Fe-oxides is reactive. In experiments of Chauvel et al. (1976) kaolinitic clay mixed with > 5% iron oxides showed a self structuring behaviour (formation of shrinkage cracks) when drying out whereas at iron oxide contents < 5% it formed a coherent matrix. Only 3% of the total Feoxides were actively participating in the aggregation process. Rapidly sealing

⁴ Soil loss was calculated from soil erodibility values which were adjusted to 800 N/h mean annual erosivity (approx, 1200 mm/a).

soils generally suffer higher soil losses than non-sealing soils. The type of clay mineral also influences the formation of seals and the infiltration capacity of the soils. Soils rich in smectitic clay (e.g. Vertisols) swell and shrink with varying moisture content. Infiltration is, therefore, high in the dry state while cracks are open. In the moist state these soils become extremely sticky and plastic, cracks are closed and infiltration reaches very small values. Soils rich in kaolinitic-oxidic clay, on the contrary, are well aggregated in the dry and moist state. They are less susceptible to sealing than soils with 2:1 clays (Levy & van der Watt, 1988; Shainberg et al., 1991). The stable structure of the former enables high infiltration rates.

Table 42-2: Soil properties influencing soil erosion.

Type and quality of the parent rock act on the texture of the formed soil. For example, sandy soils form from granite whereas clayey soils form from basalt. Soils high in silt and low in clay and sand are highly erodible. Erodibility decreases with a decrease in silt, regardless whether the corresponding increase is in the sand or the clay fraction (Wischmeier & Mannering, 1969). The high erodibility of silty soils is explained by their weak structural stability. They rapidly form surface seals upon raindrop impact. Erosion is less on clayey soils due to their better aggregation and on sandy soils due to their non-sealing surface. Fine sand (0.05–0.1 mm diameter), however, behaves like silt and is therefore attributed to the silt fraction for soil erosion aspects (Wischmeier & Smith, 1978).

Soil organic matter (SOM) influences soil loss by improving soil structure, root penetration, water capacity and infiltration. With increasing SOM, erodibility decreases (Wischmeier & Smith, 1978). SOM consists of very heterogenious particles ranging in size between several mm down to < 0.002 mm. Chemically very reactive organic molecules compare with more inactive one's and resistant components with rapid decomposing one's. The role of SOM as a binding agent is more important on soils deficient of other structuring components. Therefore, the importance of SOM decreases with increasing clay content (Wischmeier & Mannering, 1969). Valentin & Janeau (1989) found that structural stability was only improved by organic matter if the ratio of organic matter to clay was ≥ 0.07 . In tropical cropping systems SOM is high after the fallow and declines rapidly during the cropping period. Thus, erodibility changes during a cropping cycle from low values during the fallow and at the beginning of cultivation to higher values towards the end of cultivation. In own trials the erodibility during the first year of barefallow after bush and forest fallows was only 40% and 80%, respectively, of the final erodibility which was reached after about 3 years of barefallow (Nill, 1993).

Aggregate size and stability have a permanent and a variable component, the latter of which reflects, among other influences, vegetation and management. Erodibility decreases with increasing aggregate stability as seal formation is delayed and infiltration increased. However, the effect of aggregate size is less clear. Mostly soil loss was found to become smaller with increasing aggregate size (Ekwue, 1991; Falayi & Lal, 1979) for aggregate diameters between 0.5 and 50 mm. Luk (1983) tested aggregate classes between 0.5 and 30 mm and found higher splash and sheet erosion from larger than from smaller aggregates. Wischmeier & Smith (1978) also attributed higher erodibilities to larger aggregates. However, Ambassa-Kiki & Lal (1992) only found a soil loss decrease up to 10 mm aggregate diameter. For aggregates between 10 and 100 mm no effect was measured.

The effect of the exchangeable cations is especially important on less weathered soils of the semi-arid to arid tropics. These soils are weakly structured due to low SOM and oxide contents and have often sandy to loamy texture. Na, as a monovalent cation, has a pronounced dispersing influence on soil structure. 3 to 5% of Na on the exchange complex are enough to disperse the soil (Shainberg, 1985) and erodibility increases with increasing Na content (Singer et al, 1980). Mg saturated soils were found to be more erodible than Ca saturated soils caused by the larger hydration shell of the Mg ion which weakens bonds between soil particles. The stronger aggregation in the presence of exchangeable aluminium explains the higher stability of acid soils. The electrolyte composition of the soil solution also exerts an influence on soil loss through flocculation/dispersion effects. For example, saline soils rapidly disperse after dilution of the soil solution at the on-set of rain.

On previously moist soil runoff starts earlier and reaches higher runoff volumes than on initially dry soil. For this reason, rains occurring at the on-set of the rainy season generally cause less runoff and soil loss than rains at the end of the rainy season. Not much data are available about the influence of soil and water temperature on soil loss. With increasing temperature water viscosity decreases. Aggregate destruction caused by the pressure of encapsulated air during rapid wetting of the aggregates is enhanced if the wetting velocity is higher. Water mulch by less viscose water (= "more liquid") will be less protective against raindrop impact. Auerswald (1992) explained a soil loss difference of 17% between artificial rain applied in the morning and in the afternoon with a temperature difference of 8°C.

4.3 Topography

Topography influences soil loss by the length, gradient and shape of a slope. Soil loss increases very sensitively with gradient and commences already on slopes < 1%. Mutchler & Greer (1980) measured losses up to 5 t/ha from dry soil and up to 11 t/ha from wet soil on a 0.2% slope when a simulated 60 min storm was applied. In Senegal, annual losses from groundnut fields on a 1% slope reached 15 t/ha (Fournier, 1967).

Uncertainties arise, however, where the influence of gradient has to be quantified. Most studies propose an equation for soil loss from interrill areas of the form

$$\mathbf{A} = \mathbf{a} * \mathbf{S}^{\mathbf{b}} \tag{12}$$

with	А	soil loss
	S	gradient
	a, b	constants

Values for b between 1.35 to 2 were suggested (Hudson, 1986; Hudson & Jackson, 1959; Musgrave, 1947; Zingg, 1940). A value of b = 0.67 was suggested for soil loss from rills (van Liew & Saxton, 1983). In the USLE the influence of gradient is described by

 $S = (65.41 * \sin^2 \alpha + 4.56 * \sin \alpha + 0.065 [-]$ (13) with α slope gradient [degrees]

More recent analysis of slope/soil loss data revealed a change of the relationship at > 9 % slope (McCool et al., 1987). Soil loss for very low slopes was found to be overestimated by the LS factor (Murphee & Mutchler, 1981). Runoff on low slopes flows slowly and quickly forms a water layer deep enough to act as surface mulch. It further became apparent that soil loss depends on the ratio of rill to interrill erosion. Soil loss is higher on soils very susceptible to rilling (McCool et al., 1989) and the potential for rilling is greater on steep slopes (Mutchler & Greer, 1980). S factors for the Revised Universal Soil Loss Equation (RUSLE) are, therefore, calculated by:

 $S = 10.8 * \sin\alpha + 0.03 \quad [-] \tag{14}$

$$S = 16.8 * \sin \alpha - 0.5$$
 [-] (15)

$$S = 3 * (\sin \alpha)^{0.8} + 0.56 \quad [-] \tag{16}$$

with α slope gradient [%]

Equation 14 and 15 are used for slopes > 4.6 m long and gradients of < 9% and > 9%, respectively. On slopes < 4.6 m long rill erosion is negligible on most soils and equation 16 is to be used.

Increasing slope length enhances soil loss as more runoff can accumulate on long slopes. For slope length, the following term is used (Wischmeier & Smith, 1978):

 $\mathbf{L} = [1/22.1]^{\mathrm{m}} \quad [-] \tag{17}$

with l slope length [m] m slope length exponent [-] The product L* S is called the topography or LS factor. The LS factor was derived from soil loss data of slopes ranging from 3 to 18 % and 9 to 90 m (30 to 300 ft) long (Wischmeier & Smith, 1978). Beyond these ranges no measurements were taken. However, the equation was regarded applicable by the authors to slopes 300 m long and 50 % steep (cf. Chapter 7.3). Foster et al. (1982) estimated that the LS factor can be applied in the tropics to slopes up to 25 % whereas Hurni (1980) used the LS factor for slopes > 50 %. The LS factor was verified in West Africa on slopes between 4.5 and 23.3 % (Roose & Sarrailh, 1989) whereas Sheng (1990) reported an overestimation of soil loss by the LS factor on 30 % slopes.

The effect of slope length on soil loss is interrelated with slope steepness. This is expressed in the slope length exponent m of the LS factor which is 0.5 for slopes > 5% and decreases to m = 0.15 for slopes $\leq 0.5\%$ (cf. Chapter 7.3). In the earlier development of the equation, an exponent of 1.6 was used (Zingg, 1940). Dangler & El-Swaify (1976) reported an underestimation of soil loss by the L factor as used by the USLE. However, on soils from West Africa L^{0.3} was found to give better results (Roose & Sarrailh, 1989). In the RUSLE, m varies between 0.02 and 0.83 depending on the soils susceptibility to rilling (McCool et al., 1992).

Soil loss is also influenced by the shape of a slope. It decreases in the order convex > regular > concave slope form. On a convex slope, where the gradient increases in the order up-slope < mid-slope < down-slope, a large runoff volume coincides with the maximum gradient (down-slope). On the contrary, on a concave slope the maximum gradient is up-slope where runoff is still smaller.

4.4 Cover, tillage and protection techniques

Cover, tillage and protection techniques depend on management, in contrast to rain erosivity, soil erodibility and slope. This makes them of foremost importance to soil conservation. Management practices can be distinguished according to the basic erosion processes that they influence:

I. Methods which reduce the runoff volume or the sediment transport capacity

All methods which increase water infiltration or reduce runoff velocity also reduce soil loss. If runoff is slowed down, the water stays longer on the field and gets more time to infiltrate. Additionally, the water layer on the soil surface becomes deeper and protects the soil from raindrop impact (cf. Chapter 3).

These methods include:

- \triangleright reduced tillage
- ▷ no-tillage
- ▷ tillage and planting across the slope (contouring)
- \triangleright soil cover by inorganic or organic mulch
- ▷ surface forming practices (ridging, tied-ridging, bedding)

II. Methods which reduce the slope length

Thereby, the runoff producing up-slope area and runoff volume are reduced. Soil may still be transported but physical obstacles divert runoff and/or cause deposition. This group includes:

- ▷ hillside-ditches
- \triangleright filter-strips with grasses, hedges or tree rows
- \triangleright earthen and stone bunds
- \triangleright terraces

The single methods mentioned above are described and discussed in the following.

4.4.1 Reduced tillage and notillage

Tillage breaks down soil aggregates, disturbs soil structure, pore continuity, and biological activity and produces transportable soil material. Reducing tillage intensity and frequency increases the number of continuous pores, maintains aggregation and reduces organic matter decomposition. Thereby, binding agents between soil particles like fine roots, fungal hyphae, root and bacterial exudates are conserved. The soil stays more consolidated as compared to tilled soil. Thus, infiltration and resistance against impacting drops and shearing forces of the water are higher than on tilled soil.

4.4.2 Contouring

Contouring necessitates that all tillage and planting operations are carried out across the slope. These operations produce a low surface relief across the slope. Runoff is slowed down and the surface storage is increased. With increasing gradient, the surface storage capacity decreases (cf. Figure 3-7) and the risk of spilling over with consequent rill formation increases. Therefore, the efficiency of contouring reaches a maximum on slopes between 3 to 8% (Wischmeier & Smith, 1978).

However, the effect of contouring is uncertain in handtillage systems where the soil is tilled from the bottom of a field moving up-slope and were a general down-slope movement of the soil from hoeing can be observed. Thus, tillage in such systems is not on contour in the strict sense. Only contour planting can be achieved.

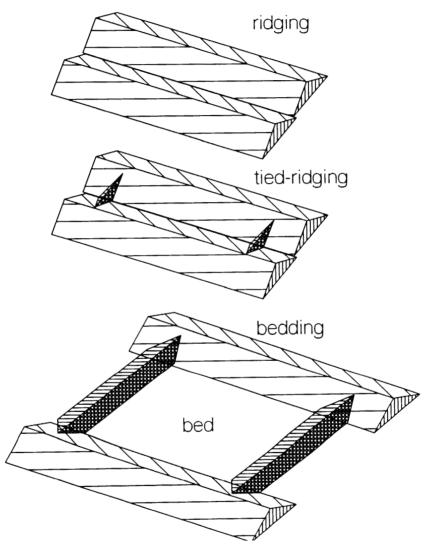
4.4.3 Soil cover by organic mulch

Surface cover is one of the most efficient measures for soil loss reduction. Organic material is easily available in areas with sufficient rain. Residues of the previous crop, weeds and additional mulch material from outside the field can be used (leaves; twigs from bushes, hedges; straw; wood cuttings; organic household waste like peelings, shells and husks). Left at the soil surface, they protect the soil against the pounding drops and prevent seal formation. The stalks and leaves form barriers where the water ponds (= water mulch). Runoff is slowed down due to twisted pathways. Additionally, residues and mulch reduce variations in soil temperature, humidity and thereby biological activity and improve structure and infiltration. Earthworms which move to the soil surface in order to pick up food create large continuous pores. Mulch efficiency depends on the surface area covered by the material (cf. Figure 74-2).

Incorporation of the residues diminishes the coverage. The deeper the residues are incorporated into the soil, the less protection they offer against erosion. The efficiency of surface mulch may also be reduced on soils with extremely unstable structure (e.g. soils with high sodium saturation or hard setting soils) where aggregates already disperse on moistening⁵. On such soils superficial incorporation may provide higher infiltration rates because the

⁵ A test can be carried out by submerging dry aggregates or fragments of 1-2cm diameter in water. Unstable aggregates break down immediately

decomposition products of the residues stabilize soil aggregates and the residues act as stabilizing framework.


4.4.4 Inorganic mulch

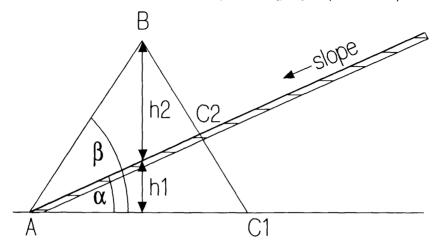
Several forms of plastic foils are used in intensive agriculture and gardening to protect the soil, reduce evaporation and suppress weed growth. However, these mulches play a marginal role in small scale agriculture. An important natural mulch material are stones and gravel of various sizes. Stone pavements and surficial gravel concentrations on soil surfaces frequently indicate erosion processes. The gravel was enriched at the surface by the selective removal of the soil. With increasing cover of the surface, the soil underneath becomes protected. However, the active use of gravel as mulch material deserves much more attention than recently given. In highly leached soils of the humid tropics, the use of gravel from basic rocks may additionally deliver some nutrients.

4.4.5 Surface forming practices (contour ridging, heaping, tied ridging, bedding etc.)

These methods create physical obstacles (Figure 445-1) which reduce especially the slope length. Runoff is slowed down, stopped or deviated sideways on a reduced gradient. Alike contouring, the protective effect of these methods depends on the gradient of the slope, the side slope and height of the obstacles and their distance from one another. Contour ridges are small earthen dams of about 10 to 30 cm height placed across a slope.

Figure 445-1: Ridging, tied-ridging and bedding reduce slope-lenght and decrease runoff velocity

The protection by ridges is low on very low slopes because soil loss is generally low. On steep slopes, it is low because the amount of water which can be retained by a ridge decreases with increasing gradient. A 15 cm high ridge does not store any water on slopes >25 % (Foster et al. 1992). At the same time the risk of spilling over and of break throughs in the ridges is enhanced. Thus, maximum efficiency is obtained on medium slopes (cf. Figure 751-1). The efficiency of ridges also depends on ridge height and the side slope. The higher the ridge, the more water can be stored. The lower the side slope of the ridge, the slower the runoff. Meyer & Harmon (1985) showed that on side slopes < 0.5 % the suspended sediment in the runoff is deposited and most of the sediment originates from the ridge-sides. Above 2% side slope deposition ceases and the sediment is moved out of the field. With side slopes of 5-6% rilling of the furrows commenced.


The effect of furrows also depends on storm size. Large storms may surpass the carrying capacity of the furrows and cause overflowing of the ridge top. Overflowing may cause very severe damages and should be avoided in any case. Thus, efficiency is less for areas with frequent large storms. The 10 year storm which is the largest, regularly occurring storm within 10 years, can be used to calculate the efficiency of contour ridging for an area.

As the ridge-sides act as runoff producing area for the furrows, the runoff producing area increases with the length of the furrows and so does the runoff volume. In order to avoid overflowing of the ridge tops or rilling, furrow length should be limited.

Not much is known about the effect of **ridges placed along the slope.** Measurements on slopes of 7 to 13% indicate an erosion enhancing influence (P factors⁶ between 4 and 6). On slopes of 13 to 20% the negative effect was less pronounced (P = 0.31 to 3.4) but still important (Reining, 1991).

Heaps of varying sizes are frequently used especially for tubers but also for other crops like groundnut or bambara nut. The loose, rich topsoil used for the heaps is favourable for tuber formation. Water logging is prevented by the heaps and mineralization is enhanced. However, not much is known about the effect of heaping on soil erosion. Unfortunately, size and arrangement of heaps on a slope are mostly not described in literature.

⁶ A P Factor < 1 indicates less erosion compared to a barefallow field whereas P > 1 indicates no protection. More information is given in Chapter 7.5

Figure 445-2: Relation between slope and height of heaps on the slope

Heaps on a slope A \rightarrow C2 enlarge the average gradient α by the gradient β - α on the sidewalls (Figure 445-2). Taking the maximum angle of about 40° $(\alpha + \beta)^7$ into account which forms if topsoil is poured on a heap, the actual gradient of the slope is changed on the heaps into a gradient of about 80% (= 40°) on the sidewalls. This also implies that the heaps become lower with increasing slope as demonstrated by heap height (h1+h2) for heap ABC1 on level ground compared to h2 for the heap ABC2 in Figure 445-1. Runoff from the heaps enters into the furrows among the heaps and moves downward in a concentrated flow. Runoff volume depends on the size and arrangements of the heaps. Compared to small heaps, large heaps have a larger runoff producing sidewall area and less drainage paths between the heaps. If the heaps form furrows along the slope, rapid water movement results. If they are arranged in quintuples, the water has to flow around the heaps and a reduction of the flow velocity can be assumed. If the heaps are arranged up and down-slope, runoff is directed straight down-slope and will reach a higher speed.

⁷ The maximum slope angle for heaped up soil (angle of repose depends on the particle size distribution. Surface soil < 40 mm = 38.7°; aggregates 1-2 mm = 40.2°; surface soil sieved to < 2mm = 37.6° (Auerswald, 1993).</p>

The influence of heaps on soil loss further depends on surface soil depth. On soils with a thin surface horizon, all soil is scraped together for the heaps. The underlying soil which can have very different properties is exposed. A pattern of very different soil erodibilities is created this way which can include, for example, a less erodible surface soil on the very steep side-walls of the heaps and an erodible subsoil between the heaps. Overall soil loss should be notably increased in this case.

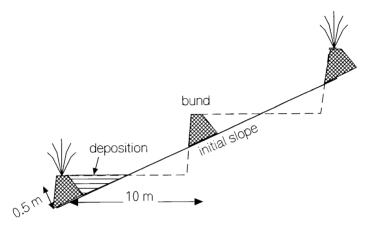
4.4.6 Bufferstrips

Bufferstrips (filterstrips) are < 1 m to several m large strips of planted grasses, hedges or natural vegetation on contour. They slow runoff down and maintain higher infiltration rates within the strips as compared to the adjacent field. If runoff occurs, soil is transported within the cropped area and deposited in the vegetated bufferstrip. The runoff either infiltrates completely in a bufferstrip or crosses the strip. If all runoff infiltrates, all transported sediment is deposited. If part of the runoff passes through the strip only a part of the sediment is deposited. First, the coarser, heavier sand particles and aggregates settle whereas the small particles of clay and organic matter are further transported and may leave the strip on its lower side. Thus, quantitatively a large part of the sediment can be retained by a bufferstrip while an important amount of fertile soil is still lost. Compared to temperate soils, this is more relevant on leached tropical soils. Their low cation exchange capacity (CEC) is largely associated with the organic matter. Another inconvenience of strips with incomplete infiltration is that the water which leaves on the lower side can speed up again and pick up new sediment.

1 to 4 m large bufferstrips on 4-20 % slopes can reduce soil loss by 10 to 90%. Strips with natural fallow vegetation can already be spared out when cultivating the field. Compared to such strips, planted strips have a lower efficiency in the 1st year. Efficiency declines after an optimum due to increasing sedimentation in the strips. A 40 m wide bufferstrip for example dropped from 99 to 75% efficiency during 9 months (Barfield & Albrecht, 1982). In agreement with other authors, Schauder & Auerswald (1992) could show that a 30m wide grass strip on a 8% slope retained 64% of the sediment which entered the strip (ca. 1t/m strip width). The efficiency increased with increasing strip width (cf. Figure 752-1).

Bufferstrips are more acceptable to farmers if they give some yield. Introduction of fruit trees or woody species may be of more interest than pure grass strips and can encourage farmers to protect the strips against fires. Some common grass and tree species used for bufferstrips and biological control are listed in Table 42-1 Annex. An extensive databank on suited woody species is available from ICRAF/ Nairobi⁸.

4.4.7 Contour bunds (stone bunds, earthen bunds, diguettes)


Bunds are a form of high ridges which are mounted at a distance of several m from one another (Figure 447-1). They can be constructed from soil or stones or both combined (carthen core with stones on the outside) (Figure 447-2). Bunds are used to control erosion and to conserve water. Impermeable bunds (from earth or with an earthen core) stop runoff completely and direct it sideways. They are more rigid in their action and are to be constructed more solid than permeable bunds. Waterlogging in front of impermeable bunds can be a problem for sensitive crops.

Runoff hitting a permeable bund (e.g. stone bund) is slowed down, slowly penetrates the bund and leaves partially on its lower side. Reduced velocity also favours infiltration on the lower side. However, the runoff may regain velocity and pick up new sediment. Thus, the area below a bund may be eroded whereas the area in front of the bunds is sediment-enriched. Therefore, small terraces form after a couple of years.

Bunds are recommended on slopes of less than 12% (Table 449-1) but are also used on steeper slopes with success. In order to diminish maintenance work, the bunds should be planted to permanent vegetation (grasses, woody species, trees).

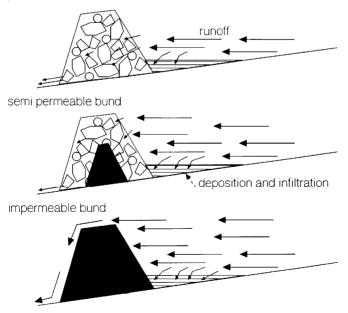
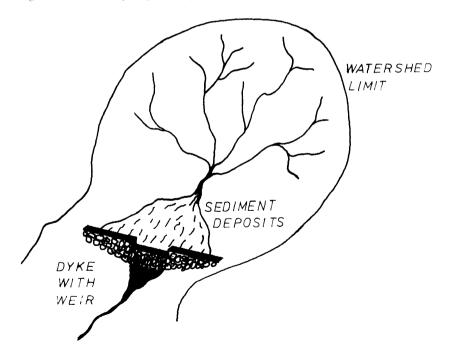

⁸ Multipurpose Tree & Shrub Database (ca. 120.- US\$) ICRAF, P.O. Box 30677, Nairobi, Kenya

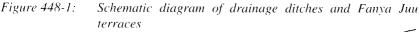
Figure 447-1: Contour bunds on a 10% slope. After some years small terraces form naturally

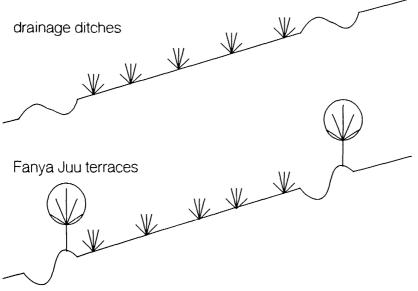

Figure 447-2: Bunds are constructed as permeable, semi permeable or impermeable works

permeable bund

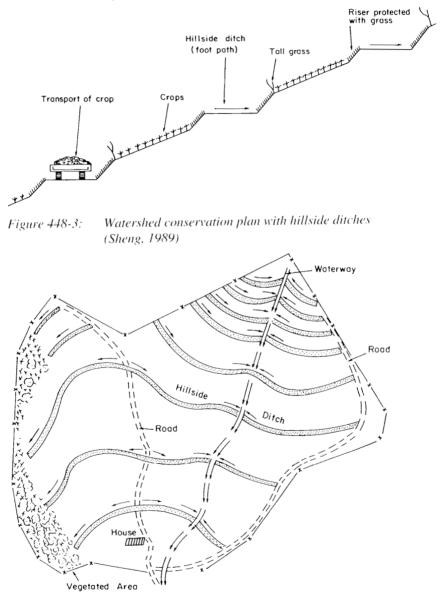
Dykes are a large version of bunds which is especially used in semiarid to arid areas to store water and to slow down torrential floods. They are the transition to the even larger dams. Alike bunds, dykes are constructed as permeable (digues filtrantes) or impermeable obstacles (digues déversantes). Between the two extremes there are a couple of intermediate solutions with impermeable lower and permeable upper parts (Figure 447-2). In the first case, the water is slowed down and momentarily stored while it percolates through the dyke. In the second case, the water is stopped and stored behind the dyke. The water quantity exceeding the dykes storage capacity either flows over the top of the dyke or is conveyed by a weir or spillway. Behind the dyke, water infiltration is increased and sediment deposited (Figure 447-3). The deposits are either used for irrigated cultivation in the border zone while the water is retreating or for a crop which uses the water stored in the soil. Clayey deposits serve for brick construction.

Figure 447-3: Dykes form deposits which are used for cultivation




4.4.8 Protective ditches

Several types of ditches can be established on contour to slow down runoff and collect eroded sediment. Drainage ditches are constructed by disposing the excavated soil down-slope of the ditch (Figure 448-1). The ditches are laid out on contour or with a slight side-slope of 0.4 to 0.5% (see Hudson, 1975for planning principles). Drainage ditches reduce slope length into several segments. The down-slope concentration of runoff is thereby avoided. The sediment spilled into the ditches needs regular excavation. Maintenance efforts are therefore high.


The Fanya Juu terraces are a modified version of drainage ditches especially used in East Africa (Figure 448-1). The excavated soil is disposed up-slope thereby forming an earthen bund which traps further sediment.

Hillside ditches (Figure 448-2) are a form of reverse slope or level bench terrace. The bench is generally not used for cultivation but as foot path or road.

Figure 448-2: Hillside ditches facilitate access and transport (after Sheng, 1989)

Cultivation is carried out on the graded interterrace area along with further protection measures. Hillside ditches may be used for slopes of up to 47% (Sheng, 1989). They divide the slope into shorter segments and divert runoff at non-erosive velocity.

A version of the hillside ditch is the broad based terrace used in mechanized agriculture. It can only be used on gentle slopes. The interterrace space and the terrace interval on the graded terrace is used for cultivation. The terrace is kept as low as possible in order to allow the passage with farm equipment. Figure 448-3 shows how these measures are laid out in a watershed or farm. The runoff collected by the ditches must be disposed safely by constructed waterways or by conveying it into densely vegetated areas.

4.4.9 Terraces

Terraces are described by a number of characteristics. Important features are the vertical height, the horizontal length, the ratio of the raiser b/a, the reverse slope a, the side slope, the terrace interval and the interterrace interval (Figure 449-1). They are used for a range of purposes as:

- \triangleright to divide a slope into shorter segments
- \triangleright to reduce the slope angle on the terrace interval
- \triangleright to convey the surface runoff to controlled water ways at a non-erosive velocity
- ▷ to harvest water from interterrace intervals for water conservation
- ▷ to store water for paddy cultivation
- ▷ to store sediment eroded from the interterrace interval

A number of different terrace types was developed to cope with these tasks. Most of them can be described as modified bench terraces (Figure 449-2).

The level bench terrace has a wide-spread use for paddy cultivation whereas the reverse slope and outward slope bench terrace are favourable for upland crops of the humid tropics. The conservation bench terrace is used in semi-arid to arid areas for water harvesting. Bench terraces are used on slopes between 12 and 50% and are built by hand, animal drawn equipment or machines.

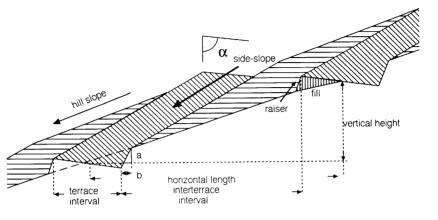
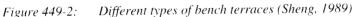
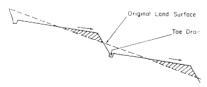
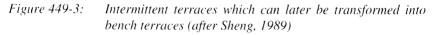
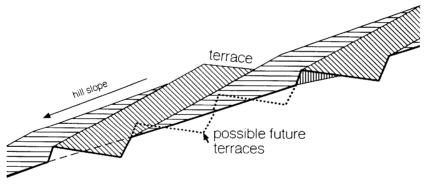




Figure 449-1: Key parameters for terrace planning


- 1. LEVEL BENCH TERRACES Original Land Surface Original Land Surface Upke
- 2. OUT WARD SLOPING TERRACES



Original Land Surface Toe Drain The intermittent terrace is used if terracing is not completely carried out for the entire slope (Figure 449-3). The design is carried out as for bench terraces but only every 3rd terrace is constructed. This leaves the option to later construct further terraces in between which gradually transforms the intermittent terraces into bench terraces.


Orchard terraces are used for tree plantations on very steep slopes in order to facilitate access and maintenance (Figure 449-4). The terrace interval is not planted to trees but stabilized by grasses. The distance between the orchard terraces is determined by the spacing of the trees which are planted in the interterrace interval. In combination with orchard terraces individual basins can be used to plant the trees in the interterrace interval (Figure 449-4). The individual basins prevent erosion and loss of fertilizer and herbicides. They conserve water especially if mulched.

The area between the individual basins is vegetated.

Figure 449-4: Orchard terraces in combination with individual basins are used on very steep slopes (after Sheng, 1989)

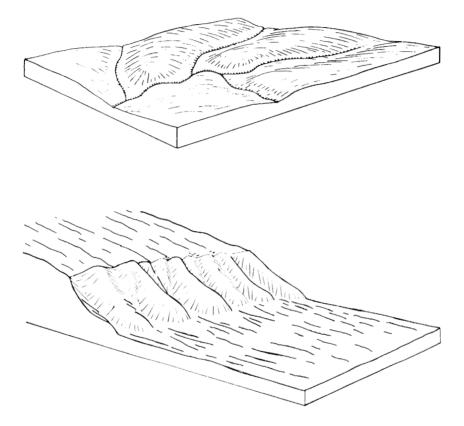
Some characteristics and applications summarized by Sheng (1989) are listed in Table 449-1.

Table 449-1;	Characteristics	and	applications	for	different	types	of
	terraces (after Sh	heng,	1989)				

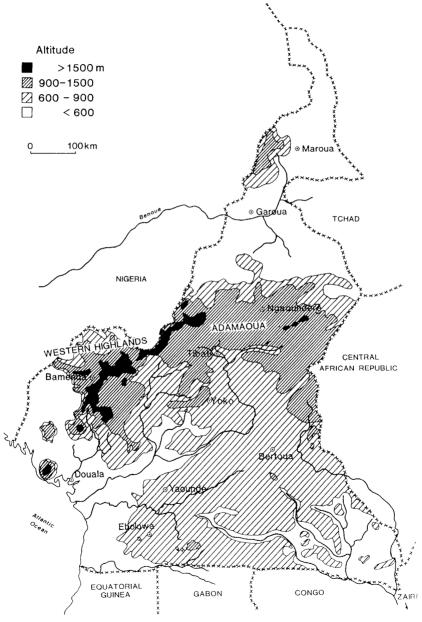
terrace type widtl	h of terrace interval	reverse slope	land slope
	(m)	[%]	[%]
bench terraces (hand made)	2.5-5.0	_5	12 - 47
intermittent terraces	2.5-5.0	5	12 - 47
natural terraces			
(caused by bunds)	8-20		< 12
orchard terraces	1.8	10	47-58
individual basins	1.5 round	10	< 58
hillside ditches	1.8-2.0	10	< 47

The length of the terraces is generally < 100 m and a side slope of 1% is proposed. The terrace interval depends on slope and soil depth. The gentler the slope and the deeper the soil, the larger the terrace interval. The slope of the raiser is built with a ratio of 0.75 : 1.

5 Indicators for soil erosion


Erosion leaves finger prints which also give information on the type and intensity of the processes. Some of these finger prints are dramatic and hardly to be overlooked while others are less distinct and hidden. Such parameters and finger prints can be studied and provide useful information in a first survey on the general erosion risk.

The age of a landscape indicates its erosion susceptibility. Old landscapes are characterized by gentle slopes, plateaus and plains whereas young landscapes show a rugged relief with steep slopes and deeply incised valleys (Roose, 1975) resulting in higher erosion potential. Long periods of 'normal' or 'geological' erosion cause a lowering of the landscape, the final form of which is a peneplain. A peneplain is characterized by a low and gently undulating relief (Figure 5-1). However, often the process is interrupted by tectonic upheaval or tilting of a landscape. The base level is lowered and a new erosion cycle starts. Tectonic movements and several erosion cycles create a landscape of plains at different altitudes (pediplains) which are separated by distinct scarps (Figure 5-1). The oldest surface corresponds to the highest surface. Remnants of the older surface were separated from the faster eroding pediplains and form isolated steep hills (inselbergs) or plateaus on the pediplain below which occur frequently in the savannah areas of West and East Africa (Thornbury, 1985). These remnants were maintained because they were resistant to erosion. An example from Cameroon shows how pediplanation has created four levels during > 60million years (Figure 5-2) (Segalen, 1967).


Gully erosion leaves very striking features in the landscape and destroys agricultural land. In Lesotho, for example, it is estimated that 4% of the arable area is occupied by gullies (Wenner, 1989). Gullies vary greatly in size. They are defined as deep enough in order that crossing is impossible with agricultural machines while rills can still be closed by ordinary tillage methods (Hudson, 1986).

⁹ lowest point of the landscape to which the water can flow

Figure 5-1: Concepts of a peneplain with gentle, undulating relief (above) and a pediplain with a distinct scarp between two levels (after Thornbury, 1985)

Figure 5-2: Pediplains at different altitudes as formed in Cameroon by more than 60 million years of erosion (after Segalen, 1967)

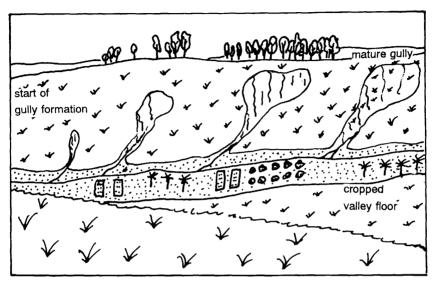
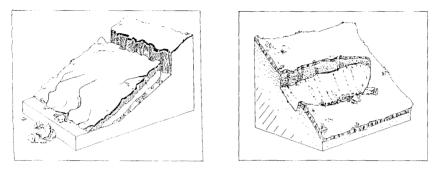


Figure 5-3: Development of gullies from initiation to maturity (modified after Hoeblich, 1992)

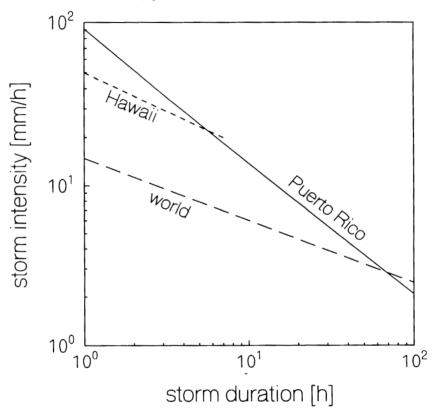

Large gullies reach several tens of meters deep and wide and several kilometers long. Gully incision starts were large runoff volumes are concentrated into linear flow. Possible sites are runoff convergence points of several fields or spillways from roads (Moeyersons, 1989). The water from the impermeable road surface collects in the road ditch and, instead of entering in intervals into a reinforced evacuation ditch, is often led into the adjacent area where it triggers gully formation. Lowering of the base level or large storms which coincide with a sparsely vegetated soil can also initiate gully formation (Oostwoud Wijdenes & Bryan, 1991).

Gully formation is facilitated on soils with a coarse textured surface soil underlain by clay-rich subsoils (Lal, 1992). Concentrated lateral subsurface flow creates subsurface pipes which in turn can start gully erosion (Firth & Whitlow, 1991). Once a gully is initiated, it is enlarged by regressive gully head cutting along with undercutting and collapse of the side-walls. The gully head moves more and more up-slope and secondary gully branches form. Soil cracks form parallel to the gully side-walls. Surface water enters the cracks which increases pore water pressure and decreases soil coherence thus destabilizing the side-walls. It was demonstrated on sodic soils that gully head advance was determined by rainfall, antecedent soil moisture, headcut height (plunge-pool effect) and runoff contributing area (Stocking, 1981). Gully development depends on the depth of the weathered layer and the watershed area. Gully incision stops if the solid rock underneath is reached. Vegetation which forms during less erosive years can also stop further gully enlargement. However, this may only be temporarily. Heavy storms or manmade damage to the protective vegetation can reactivate the gully. If the runoff producing area becomes smaller with progressive head cut regression, a mature stage of the gully is reached (Figure 5-3) (Hoeblich, 1992). Gully reclamation is laborious and costly. It is more efficient to avoid concentrated flow than to protect the soils against its damaging effect.

Landslides are another form of easy recognizable down-slope soil transport which causes disasters. 21.000 people were killed in 1970 in Peru, when an earthquake started the movement of 25 million m³ of earth which destroyed two entire towns (Schuster, 1978). Landslides occur if the weight of a sloping soil mass exceeds the shear strength of the soil. Cracks occur on the upper side of the soil mass and the soil slumps down-slope along a weakness plane. Such weakness planes within a soil or geologic substrate can be due to different layers of the soil (e.g. permeable layers over less permeable layers) or natural layering of the geologic substrate (e.g. schist). Imbalances are caused either by increasing the soil weight on the slope (e.g. construction, water saturation) or the instability of the weakness planes (undercutting by roadcuts, water saturation). Landslides are classed according to material (soil, stone), humidity (e.g. mudflows), the type and direction of the movement and its velocity (e.g. creep, flow). An example of a translational and a block slide is given in Figure 5-4.

Major determinants for landslides are **slope**, **climate**, **geology**, **layering and hydrologic properties**, **seismic activity**, **vegetation and human activities** (Gasser & Zöbisch, 1988). Moeyersons (1989) reported that landslides in Rwanda occur especially on slopes > 58% and on schist whereas on sand stone and quartzitic rocks no slides were observed. Slides on slopes < 58% only occurred if road construction caused slope instability. Landslides were more frequent on slopes > 62% in Uganda (Temple & Rapp, 1972) and on slopes > 53% in New Zealand (O'Laughlin, 1981).

Figure 5-4: Left: blockslide; right: translational slide (in: Gasser & Zöbisch (1988); after Griggs & Gilchhirst (1977) and Schauer (1975))



Landslide frequency is determined by a rainfall duration-intensity threshold which varies due to geology and climate (Figure 5-5) (Larsen & Simon, 1993). Long duration, low intensity rains cause deeper landslides on volcano-clastic material in Puerto Rico whereas short and intense storms cause shallow slumps (Larsen & Simon, 1993). Vegetation decreases landslide frequency. Plant roots increase the shear strength of the soil. A perennial vegetation consumes an important part of the rain as interception water and for transpiration. Thus, a vegetated soil is drier than an unvegetated soil. These influences of vegetation outrule the physical weight of the vegetation and the weight increase of the vegetated soil due to increased infiltration.

An indication for soil creep is the 'sabre growth' of trees. The slowly down-slope moving soil inclines the trees which in turn redirect their growth upwards. The result is a trunk form which resembles a sabre (Figure 5-6).

Construction of terraces and roads is often at the origin of landslides. The cuts weaken the slope stability or locally increase water infiltration (e.g. on the foot of reverse sloped terraces) which changes soil coherence. A similar influence is exerted by overgrazing of land. The grass cover is locally destroyed and livestock paths cut the slope and destabilize it (Wenner, 1989).

Figure 5-5: Critical values of storm duration and intensity for increasing landslide frequency (Wilson et al., 1992; Larsen & Simon, 1993; Caine, 1980) (from Larsen & Simon, 1993)

Another informative source for erosion susceptibility is the geologic map. In-situ soils are formed from the parent material underneath. Areas with parent materials which form medium to light textured soils are more endangered by erosion than those with materials that generate clayey or very sandy soils. A tentative classification for different parent materials is given in Table 5-1.

Figure 5-6: Sapre growth of trees caused by soil creep (Kittler, 1962 in: Gasser & Zöbisch, 1988)

erodibility			
low	medium	high	
basalt	gneiss	volcanic ash	
gabbro	diorite	granite	
shale	andesite	rhyolite	
coarse/gravelly sand deposits		granodiorite	
carbonate rocks		fine sand deposits	
		silt stone	
		loess	

Table 5-1: Soil erodibility of soils derived from different parent materials.

Soil classification as well gives rough indications for soil erodibility. With respect to USDA Soil Taxonomy erodibility increases in the order Oxisols < Ultisols < Alfisols, Vertisols, Mollisols < Aridisols (Chromec et al., 1989). Andisols were found highly variable (El-Swaify, 1990) and Vertisols proved more erodible than Inceptisols (El-Swaify & Dangler, 1982).

Erosion susceptibility decreases with increasing organic matter content which in turn increases with soil moisture and decreasing temperature. Therefore, a soil will have more organic matter in a cool highland climate and will be less erodible than a similar soil in the lowland.

A very evident indicator for soil erodibility is soil colour. Structural stability and erosion resistance of red hematitic soils is higher than of yellow goethitic soils. In other words, with decreasing hematite content, as seen from the redness rating (Torrent & Barrón, 1993), structure becomes weaker (Chauvel et al., 1976; Muller, 1977). Organic matter content is also roughly estimated by soil darkness (Munsell values).

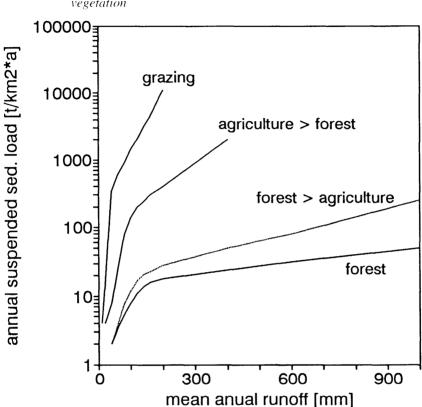


Figure 5-7: Runoff and suspended sediment load of watersheds with different vegetation

A first impression of soil erosion can be gathered from the sediment concentration in the river water. Rivers coming out of forested watersheds carry very low amounts of sediments compared to cropped and grazed watersheds (Figure 5-7). An extreme example is seen from a plane approaching Madagascar. The high sediment load of the rivers leaves a red corona close to the estuaries and coast.

Finally, a very good indicator for erosion processes is population density. Agriculture creates soil erosion and agricultural systems are often not conservative. Thus, information about the population density combined with knowledge about cropping systems, quality of the soils and climate give already an idea of the erosion potential. Further indicators like washed out roots and topsoil depth are sometimes already useful to quantify soil loss. They are therefore discussed in Chapter 6.3.3.

6 Assessment of soil erosion

Methods for soil erosion measurement depend on the scale applied and the accuracy needed. Measurements are carried out on plots of less than 1 m^2 to watersheds of several hundred km². The accuracy ranges from an estimate of the erosion dimension to measurements precise to the kg/ha. Choosing a measurement system, therefore, needs a clear definition of the problem to be investigated and the accuracy of answer needed.

6.1 Rainfall simulator studies

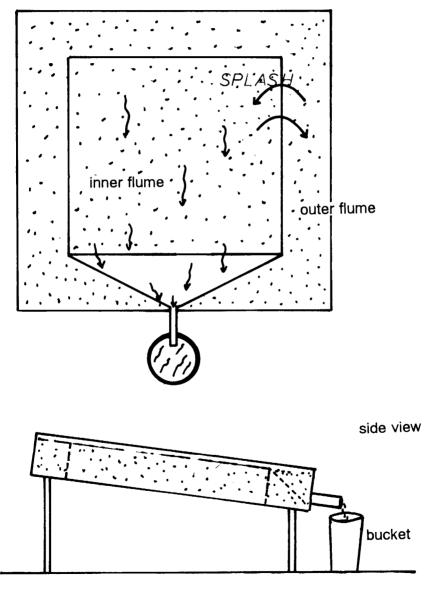
Rainfall simulators are used in the laboratory or in the field in order to apply storms of controlled length, intensity and drop size distribution to erosion plots. Today, a number of different rainfall simulators exist which apply permanent or intermittent rain from needles with drop-formers, small hoses or nozzles to plots of varying sizes. Plot size is limited by the size of the simulators and the availability of water in the field¹⁰. Simulators can be as large to fill a big truck or as small to be carried by hand (Crouch & Collison, 1989; Kamphorst, 1987). Largest and smallest plots of field simulators actually used in Germany and Switzerland are 42 and 0.38 m² (Auerswald et al., 1992b). A comprehensive review on rainfall simulators is given by Meyer (1988) and USDA (1979). A detailed description and discussion of simulators used in Germany and Switzerland was published by Auerswald et al. (1992a, b, c), Auerswald & Eicher (1992), Becher (1990) and Kainz et al. (1992).

Using rainfall simulators, soils can be tested fairly quick, under standardized conditions and independent of hazardous natural rainfall. The air-dry soil (simulations are advantageously carried out during the dry season) is exposed to several rains with varying duration and intensity. Intensity can be adjusted to the local conditions or to the international standard of 63.5 mm/h. The latter facilitates comparison with other studies. The standard treatment comprises a first storm of 1 hour. 24 hours later a second 30 min storm and after a 15 min break a third 30 min storm. This storm sequence represents rain on dry, moist and wet soil as it occurs under natural rain.

¹⁰ As a thumbrule about 10001 of water is needed for a 60 min storm of 63.5 mm/h on a 10 m² plot if the intensity is measured before and after the storm.

Runoff and soil loss from moist and wet soil are generally larger compared to dry soil. In order to calculate a mean soil erodibility for all soil moisture conditions during the year, soil loss from dry, moist and wet soil is weighted in a ratio of 1 : 0.31 : 0.23 (Wischmeier et al.; 1971). This ratio proved valid for the climate in mainland USA. An attempt to adjust the ratio to other climates was made in Hawaii (Dangler & El-Swaify, 1976) by taking the number of dry and wet¹¹ months to weigh the storms on dry and wet soil. A storm on very wet soil was not carried out. Correct results were obtained in Cameroon by applying a ratio of 1 : 1 for dry and wet soil (Nill, 1993).

6.1.1 Laboratory studies with simulated rainfall

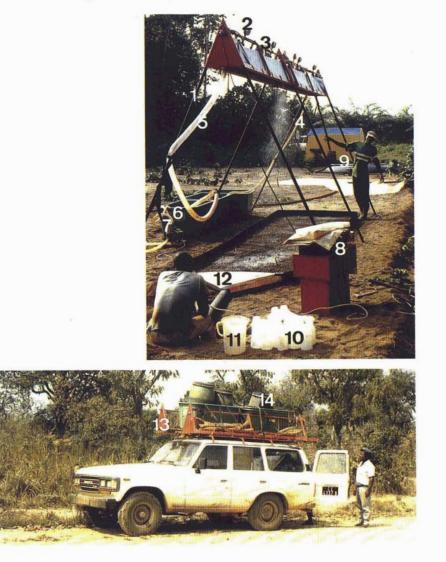

Laboratory tests are used especially for the study of single erosion processes like surface scaling, rill and interrill erosion, splash crosion, influence of mulch layers and different rain intensities. Relative differences in the erodibility of soils can also be evaluated. However, if quantitative information about soil loss is needed, the results from laboratory tests are better calibrated with to data from larger erosion plots under natural rainfall. In laboratory tests only a part of the soil profile (generally the surface soil) is used and the soil is disturbed in its natural structure. Therefore, results on runoff and soil loss can only be compared to in situ soils if the runoff volume is determined by the surface layer (= rapidly sealing soils). If runoff is especially determined by less permeable subsurface horizons or the degree of presaturation of the soil, laboratory test are of limited use. This is often the case for well structured soils rich in oxides, clay and organic matter.

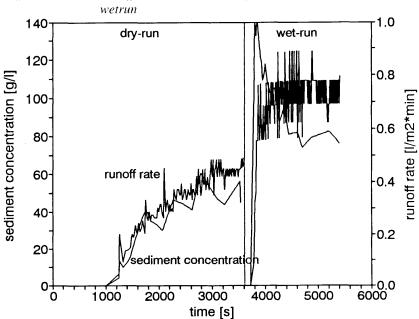
The advantage of laboratory tests are the controlled conditions of slope angle, water temperature and quality (some tests are carried out with distilled water), rain intensity and antecedent soil moisture. The small plots can easily be handled which facilitates repetitions. The comparatively small amount of soil needed allows the collection of very different soils distant from one another.

¹¹ A wet month was characterized by the median rainfall exceeding class A pan evaporation for the month.

Figure 611-1: Schematic diagramm of a flume used for laboratory rainfall simulation

plan view




For the tests, a layer of soil is packed into a flume about 10 cm deep where it is compacted to its natural bulk density for which a roller can be used. A large number of different flumes and rainfall simulators are used. Therefore only some general features will be given here. A flume is a wooden or metal box with an inner and outer area (Figure 611-1). The inner area is connected to an outlet which delivers runoff and sediment into a container. The outer area is also exposed to the artificial rain. The idea of an outer area is that the amount of splash which leaves the inner measurement plot is replaced by the amount splash from the outer plot entering into the measurement plot. The bottom of the flume is perforated in order to allow percolation of the infiltrating rain. The flume can be adjusted to several slope angles. Some flumes are also variable in their length.

6.1.2 Field studies with simulated rainfall

Field studies with rainfall simulators are more tiresome and expensive than laboratory studies. The whole equipment and the necessary crew must be transported to the site. If water is not available in the vicinity it needs to be carried from several kilometers away and stocked beside the experimental site. Test conditions are not as controllable as in the laboratory. Antecedent moisture, slope, water quality and temperature can not be standardized. On the other hand, the soil stays rather undisturbed and the whole soil profile is tested instead of a single soil layer. For determining soil erodibility, the plot and a 50 cm wide strip around the plot are tilled to maize seedbed conditions before the test. The tilled strip around the plot serves for the same purpose as the outer area of the laboratory flume. As the soil does not need to be transported, the plot size is generally larger in field studies compared to laboratory tests. Generally the field simulators need to be calibrated on runoff plots with known erodibility.

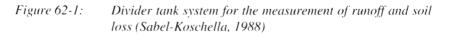
Field simulators also allow the testing of the effect of various factors on erosion such as vegetation cover during different growth stages and seasonal variation in structural stability. Use of field simulators also gives most realistic infiltration data as it reflects closely the influence of natural rain. In order to reflect the variation in soils and treatments two to four repetitions are carried out in most studies. Figure 612-1: Mobile rainfall simulator unit in the field. 1: simulator; 2: manometer; 3: spraying nozzle; 4: supply hose; 5: outlet hose; 6: 300 l tanks; 7: electric pump; 8: electronic control system; 9: 5000 l tank; 10: 1 l sampling bottles; 11: 5 l beaker; 12: outlet; 13: dissembled simulator; 14: 120 l barrels for water transport

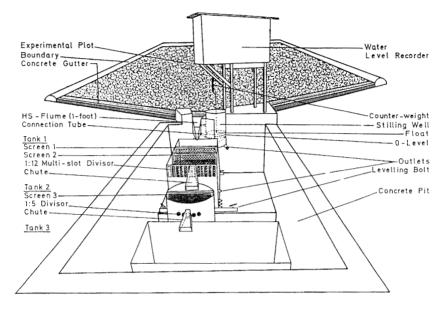
Runoff/soil loss diagramm for a 60 min dry- and a 30 min Figure 612-2:

The plots are bordered by metal sheets which are driven into the ground to 10-15 cm depth. At the bottom end a metal triangle is put into the soil which collects the runoff into a tube and finally into a graduated bucket (Figure 612-1). Standard reported data are:

- \triangleright antecedent soil moisture before the rain
- \triangleright surface roughness
- \triangleright start of rain (time = 0)
- \triangleright time for the first runoff
- \triangleright time for every litre of runoff and runoff samples depending on the volume (e.g. 1st, 2nd, 5th, 7th, 10th, 15th, 20th, 30th litre, etc.) for sediment determination.
- \triangleright end of rain and end of runoff
- \triangleright initial and final rain intensity

With these data runoff/soil loss diagrams can be set-up which demonstrate the erosion process (Figure 612-2).


6.2 Runoff plots


Measurements of soil erosion were originally conducted on runoff plots under natural rainfall. A standard plot of 22.1 m length, 1.87 m wide on a uniform slope of 9% was taken as 'unit' plot. It served as reference in comparative studies. The 'unit' plot was tilled up- and down-slope to maize seedbed conditions. Seals were regularly destroyed by further tillage (Wischmeier & Smith, 1978). Thus, all conditions were set to attain maximum soil loss. For soil erodibility measurements, a period of at least 2 years under barefallow was recommended to exclude all influences of the former vegetation.

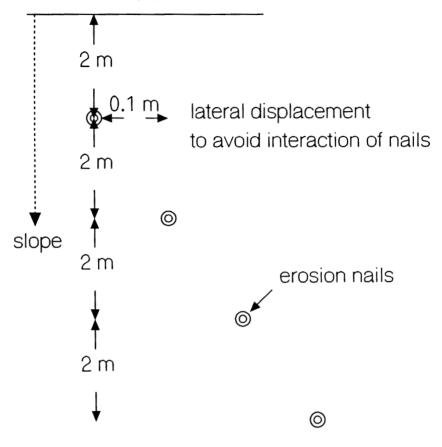
Today, experiments are carried out on plots of different dimensions and on different slopes. However, these plots can be corrected to 'unit' plot conditions with the Universal Soil Loss Equation (USLE). Nevertheless, a minimum length of 9-10 m is recommended for erosion plots. Calculation is facilitated if the surface area is equal to an even fraction of an hectare (e.g. 50, 100, 500 or 1000 m²) (Sheng, 1990). The plots should be large enough to contain a representative unit of a cropping system or treatment. Runoff plots range between < 100 m² to about 1 ha. On larger plots different slopes and soils as well as deposition within the plot create a more and more complex situation which is difficult to interpret. Additionally, it becomes difficult to control and measure the large amount of water and sediment.

The runoff plots are bordered (metal sheets, bricks, carthen ridges planted to grass) in order to prevent outside runoff from entering the plot. Runoff and sediment are collected by a drainage ditch at the bottom of the plots which leads to an outlet. Here, the volume and sediment can be measured by a divider tank system (Figure 62-1) or a Coshocton wheel. A steady measurement of the runoff rate is possible by using a standard flume and a waterlevel recorder.

The tank system consists of a large tank which can collect all runoff. If the expected runoff volume is too large, a system of several interconnected tanks or barrels is needed. If the first tank is filled the overflow is separated into a large aliquot (e.g. 90%) which spills into an outflow ditch and a small aliquot (e.g. 10%) which enters the second tank and so on. Most of the sediment, especially the coarser material, is deposited in the first tank whereas suspended soil particles will be found in the second tank. All tanks should be provided with an underground outlet to facilitate water evacuation.

Coshocton wheels are installed in the waterspill underneath a flume. The water falls onto the wheel thereby making it rotate. A slot in the wheel which is connected to a barrel passes underneath the spilling water taking each time a small aliquot of runoff. Coshocton wheels can be purchased for about 1500 to 2000 US\$. Their advantage is that they can be installed in several places, while cemented tanks become worthless after the measurement in one place.

6.3 Erosion measurement within existing fields


If less measurement accuracy is needed, there are a number of simple devices which can be used to estimate soil loss.

6.3.1 Erosion nails

Erosion nails also called crosion pins can be hammered into the soil until a defined length (e.g. 20 cm) stays out above the soil surface. If this length is reduced or enlarged, sedimentation or erosion has occurred i.e. the soil surface has increased or decreased. The nails are placed along the slope of a field with an interspace of some meters and a lateral displacement of 10 to 20 cm (Figure 631-1) in order to avoid any interference on runoff from one nail to the nail below (Zöbisch, 1986). Length measurement of the nails must be carried out with high precision. An error of 1 mm in length means an error of 10-15 t/ha if bulk density is supposed to be between 1.0 and 1.5 g/cm³. Therefore, a metal plate 5 cm in diameter is slipped onto the nails to compensate for random roughness of the soil surface. The length is measured with a slide calliper precise to 0.01 mm (Figure 631-2). The mean length of all nails is compared to the mean initial length. The soil loss can than be calculated by the missing soil height if the soils bulk density is known.

As the measurement error can be appreciable, this method is especially suitable for measurements over a period of several years or for sites with a high erosion potential.

Figure 631-1: Set-up of erosion nails on a slope

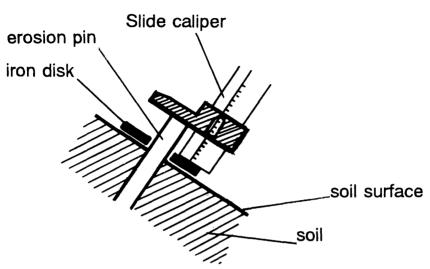
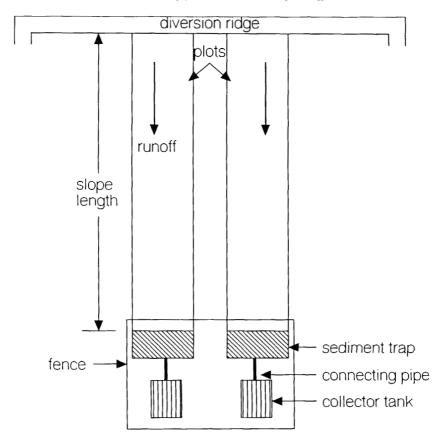
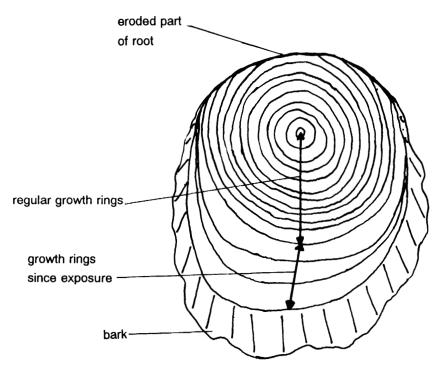



Figure 631-2: Measurement of nail height with a slide calliper

6.3.2 Sediment traps

Sediment traps are simple and cheap devices which permit the measurement of runoff and soil loss. They were extensively used in measurements in Kenya (Zöbisch, 1986). The traps consist of a 50 x 50 cm metal box closed on three sides by a 5 cm high rim. A 10 cm long extension of the bottom is left at the open front part. This extension can be pushed into the soil in order to allow runoff to freely enter the far end of the box which is installed at a slight angle. The box is covered by a lid ;to avoid direct access of rain water. At the far end a funnel is attached to the trap which is connected to a 301 reservoir where runoff and sediment are collected.

Figure 632-1: Sediment trap for measurement of runoff and soil loss


The sediment traps are installed in places with homogenous slope. A conversion ditch 10 m in front of the traps diverts runoff from further upslope. The catchment area of 5 m² for the sediment traps is given by the width of the traps (50 cm) and the slope length (10 m). It is assumed that runoff which enters the area laterally equals the runoff volume which leaves laterally. A sketch of a sediment trap system is given in Figure 632-1.

A system with this design collects about 6 mm of runoff. It needs to be emptied after each rain. For larger storms either the reservoir must be bigger or the catchment area reduced.

6.3.3 Diverse techniques

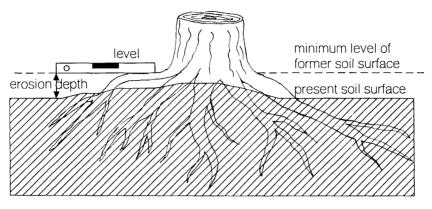

Root growth of many trees is evidently inhibited on the exposed root parts as the bark and cambium are damaged. This was found for Pinus aristata (La Marche, 1968), Pinus edulis, Juniperus scopulorum and J. osteosperma (Carrara & Carroll, 1979). Soil loss is calculated as the depth since exposure of the upper root surface which is observed on the growth rings (Figure 633-1).

Figure 633-1: Calculating the time since exposure of tree roots by the growth rings of root sections

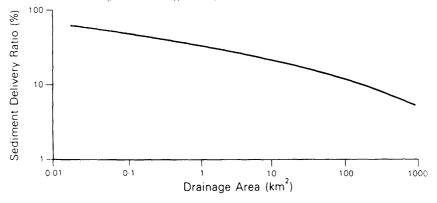
Dunne et al. (1978) used a similar approach in Kenya by measuring the height of the mounds underneath Acacia drepanolobium, A. tortilis, Sericomopsis pallida, Olea africana and Acocanthera species (Figure 633-2). These tree species were chosen because they do not develop any superficial roots. However, caution must be given that the mounds were not formed by water and wind erosion, termites or the trees themselves. The age of the trees was given by a regression between number of growth rings and diameter of the stem. Acacia drepanalobium is reported to develop a physiological mark on the stem at the level of the original soil surface (a bulge, branching or change of bark colour). An indicator for very erodible sodic soils is Colophospermum mopane (Stocking, 1988).

Figure 633-2: Measuring the height of the former soil surface by the use of exposed tree roots

Some methods can only be used very site-specifically. Rhoton et al. (1991) used the gravel concentration of the surface soil in order to calculate the croded depth of a soil with rather homogeneous gravel content.

6.4 Sediment yield from river basins

Suspended sediment yield of rivers is calculated by measuring the cross section of rivers, the waterlevel, the discharge and the sediment concentration. Sediment yield, however, only gives a rudimentary estimate of the soil loss from fields within the basin. Several factors bias the result:


- Sediment yield measurements generally only cover the suspended sediment load. The bedload which is carried close to the river bottom is neglected. The bedload of African rivers accounts frequently between 5 and 10% of the suspended load (Walling, 1984).
- The soil lost within a watershed is not entirely transported into the river. Sedimentation occurs on foot-slopes, depressions and well vegetated parts within the watershed. The sediment delivery ratio (SDR) which gives the suspended sediment load of the river relative to the total soil loss in the watershed varies with watershed size (Figure 64-1). The SDR from large watersheds is smaller than from small watersheds as the mean gradient declines and sedimentation increases with increasing watershed size.
- The soil lost from fields in the watershed can be subject to several cycles of deposition and remobilization until it reaches the river outlet. Thus, measured suspended sediment load may reflect soil erosion of former periods.
- Suspended sediment is not only derived from sheet erosion within the watershed but may also stem from gully erosion, landslides, channel and streambank erosion.

river	country	basin area	suspended sediment	FAO soil loss estimate
			load	
		[km ²]	$[t/(ha^*a)]$	[t/(ha*a)]
Watari	Nigeria	1450	4.8	10-50
Bunsuru	Nigeria	5900	4.4	10-50
Senegal	Mali	157400	0.2	10-50
Faleme	Mali	15000	0.4	10-50
Hammam	Algeria	485	2.0	10-50
Kebir Ouest	Algeria	1130	0.9	10-50
Mesanu	Ethiopia	150	16.8	50-200

Table 64-1: Annual suspended sediment load of African rivers as compared to FAO soil loss estimates (Walling, 1988)

The difference between suspended sediment loads of rivers and estimated soil erosion rates from the respective fields is demonstrated in Table 64-1. Suspended sediment load is generally an order of magnitude lower than the estimated total soil loss.

Figure 64-1: Relationship between watershed drainage area and sediment delivery ratio as used by the U.S. Soil Conservation Service for the central and eastern USA (from Walling, 1988)

7 Soil loss prediction with the Universal Soil Loss Equation

Erosion has already been noticed in ancient times. Plato already described the disastrous effects of the denudation of the hills around ancient Athens more than 2000 years ago (in: Herkendell & Koch, 1991). However, more attention to the problem was only given by the 1920s when the menacing extent of soil loss in the US became aware (Bennett & Chapline, 1928; Lyon & Buckman, 1922). As a consequence the US Soil Conservation Service was created in 1935. Soon it became insufficient to notice, describe and measure soil erosion. For a deeper comprehension of erosion and its assessment under varying conditions, it was important to understand the basic processes.

The development of mathematical models started with the equation of Zingg (1940) which related soil loss to slope length and gradient. Smith (1941) included factors for the influence of crops and conservation practices on soil loss. The addition of a rainfall factor resulted in the Musgrave equation (Musgrave, 1947). Finally data collection and analysis of 10,000 plot years from 49 locations led to the 'Universal Soil Loss Equation (USLE)' (Wischmeier & Smith, 1978) which, today, is still the basic tool for soil conservation in the US and other countries.

The USLE is an empirical model with widespread use in land use planning, extension and the design of cropping systems and conservation practices. It allows to estimate soil loss under varying climatic, topographic and management conditions on different soils with a set of relatively simple parameters. The basic idea was to measure maximum possible soil loss of a specific soil on a control plot with standard size, gradient and treatment, – the 'unit' plot. The 'unit' plot was 22.1 m long on a 9% slope. Soil loss as caused by gradients, slope lengths and management conditions different from the standard conditions was examined relative to maximum soil loss on the control plot which was achieved by barefallow tilled up- and down-slope to maize seedbed conditions. The equation is expressed as:

$$\mathbf{A} = \mathbf{R} * \mathbf{K} * \mathbf{L} * \mathbf{S} * \mathbf{C} * \mathbf{P}$$
(18)

with A mean, longterm annual soil loss [t/ha*a] R erosivity of rain [N/h]

- K erodibility of a soil, i.e. its susceptibility to erosion [t*h/N*ha]
- L slope length factor [-]
- S slope steepness factor [-]
- C management factor [-]
- P support practice factor [-]

Soil loss (A) gives the mean annual soil loss in t/ha on a longterm basis. Soil loss of a specific year may differ considerably from year to year. Rainfall erosivity (R) is calculated from rainfall charts for single erosive rains during a period of 22 years and represents the mean annual erosivity for this period. Soil erodibility (K) indicates a soil's susceptibility to the erosive forces and gives the amount of soil loss per unit erosivity. K was defined constant for a specific soil. L, S, C and P are expressed as ratios of soil loss on a given plot to soil loss on the unit plot. For example, an L factor of 2.1 for a 100 m long slope of 9% means that this slope will suffer 2.1 times the soil loss of the 22.1 m long unit plot if all other conditions (climate, soil, management etc.) are alike. A C factor of 0.2 for a crop signifies that soil loss under this crop is only one fifth of the barefallowed unit plot provided that all other factors remain constant.

The model parameters were calculated from a defined set of natural and management conditions in the US. Therefore, it was not surprising that the application of the USLE has led to contradictory results under tropical conditions (Lal, 1980; Mtakwa et al., 1987; Ngatunga et al., 1984; Roose, 1977; Vanelslande et al., 1984). Part of the differences were however caused by treatments very different from the one's defined by Wischmeier & Smith (1978). Recent data show, that the USLE can be directly applied to a wide range of tropical soils and corrections can be made for most other soils (Nill, 1993). The most urgent need exists now in obtaining reliable data on tropical cropping systems.

Today, several deterministic models exist which try to consider the numerous, complicated processes which determine erosion. Mostly they need a large amount of information on climate, soils and management. Often they are not tested under differing conditions. Compared to these models, the USLE convinces by its simplicity, the large data base which was used for its development and its widespread application. Although empirical in principle, it still includes all important factors which influence soil loss. Its parameters, possibilities and limitations will be outlined in the following chapters. The USLE was designed to predict longterm annual soil loss from a given slope under specified land use and management conditions (Wischmeier, 1976). It can be used for watersheds, if these are subdivided into smaller units where the USLE factors apply. Using mean gradients, erodibilities and slope lengths for the whole watershed may cause important errors in the estimate. Soil loss, as estimated by the USLE should rather be regarded as best available estimate than as absolute data. Soil loss from a specific event can not be calculated with the USLE. Even annual soil loss of a specific year may vary largely from longterm mean annual soil loss. The USLE does not account for deposition of sediment along field borders, ridges or on foot slopes and can not predict gully erosion.

Beside the USLE, a second important prediction model is applied in southern Africa. The 'Soil Loss Estimator for Southern Africa (SLEMSA)' (Elwell, 1980a) predicts mean annual soil loss (Z) on a given slope by:

$$\mathbf{Z} = \mathbf{K} * \mathbf{X} * \mathbf{C} \tag{19}$$

- with K mean annual soil loss from a 4.5% slope, 30 m long under conventional tilled bare soil
 - X adjustment factor for different slope lengths and -gradients
 - C adjustment factor for the influence of crop cover derived from the annual energy distribution curve and growth curves of crops

An appreciable database was collected for this model. For further details refer to Elwell (1980b), Elwell (1984) and Elwell & Stocking (1976).

7.1 The erosivity of rain (R factor)

Wischmeier & Smith (1958) found that soil loss increased linearly with a storm's total kinetic energy (E) times its maximum 30 minute intensity (I_{30}) :

$$R = \sum_{j=1}^{m} (E * I_{30}) [N/h]$$
(20)

with **R** longterm mean annual erosivity $[N/h]^{12}$

E kinetic energy of a storm j [kJ/m2]

 I_{30} maximum storm intensity of storm j during 30 min [mm/h] for $I_{30} > 63.5$ mm/h: $I_{30} = 63.5$ mm/h¹³

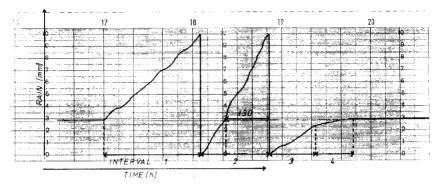
m number of erosive storms j per year [-]

The energy of a storm is calculated by:

$$E = \sum_{j=1}^{n} (11.89 + 8.73 \log l_i) * Pi * 10-3 [kJ/m^2]$$
(21)

with
$$I_i$$
 intensity for storm interval i [mm/h]
for 0.05 < I < 76.2 mm/h; for I > 76.2 mm/h I = 76.2 mm/h¹⁴
P. rainfall volume during interval i [mm]

n number of storm intervals i with equal intensity [-]


R is calculated from raingage charts. Each storm is divided in i intervals of constant intensity (1). For each interval intensity, volume and energy are calculated. The total storm energy is the sum of energy of all intervals. An example is given in Figure 71-1:

¹² R is often given in US units as [hundreds foot tons * in/ac ph] or as [foot tons * in/ac ph]. Multiply by 1.735 or 0.01735, respectively, to receive [N/h]. 1[N/h] = 10 [MJ * mm/ha * h]

 $^{^{13}}$ I₃₀ was limited to 63.5 mm/h because correlation coefficients between erosivety and soil loss improved by introducing this threshold (Wischmeier & Smith, 1978)

¹⁴ The maximum intensity was limited to 76.2 mm/h because drop diameters do not increase any more for very high intensities (cf. Chapter 4.1)

Figure 71-1: Strip chart of a 20 mm storm registered with a selfrecording rain gage with a paper feed rate of 60 mm/h

A 20 mm storm was registered by a raingage with a paperspeed of 60 mm/h and a cylinder which emptied automatically after each 10 mm of rain (= vertical drop of the line). The storm started at 17.00 hour and lasted until 19.48 hour. It was divided into 4 intervals of approximately equal intensity (= slope of the ascending curve). Energy is computed as follows:

interval	duration	rain volume	intensity	energy
	[min]	[mm]	[mm/h]	[kJ/m2]
1	64	7	6.6	0.13
2	47	10	12.8	0. 22
3	31	2.4	4. 7	0.04
4	26	0.6	1.4	00.008
l-4	168	20	7.1	0.4

The maximum rain volume during 30 min was 7.8 mm in interval 2. Thus, I_{30} equals 15.6 mm/h and $R = E * I_{30} = 0.4 * 15.6 = 6.2$ N/h.

Only 'erosive' storms are used in the calculation. For the US, they were defined as storms with at least 12.5 mm (1/2 inch) of rain or, if less, a maximum 30 min intensity of at least 12.5 mm/h (Wischmeier & Smith.

In Germany, the limit for erosive storms was set to 10 mm height or 10 mm/h as maximum 30 min intensity (Schwertmann et al., 1987). The 10 mm threshold also proved to be valid for stations in Cameroon, Nigeria and Kenya (Nill, 1993; Ulsaker & Kilewe, 1984; Wilkinson, 1975) and was used for all further computations. Storms separated by less than 6 hours are considered as one storm (Wischmeier & Smith, 1978).

The tedious procedure for the energy calculation is easier done by computer and digitizing board¹⁵. Providing erosivity data on a nationwide basis is an important task for the national meteorological services.

In practice, the calculation of reliable R factors faces several constraints. Ideally, the calculation is based on daily rainfall records over 22 years (Wischmeier & Smith, 1978). However, in most countries it is already very satisfying if 10 to 15 years of complete data are available. The obligatory subdivision of individual storms into intervals of similar intensity and the recognition of the maximum 30 min intensity demands self-recording raingages with high resolution. Very often these requirements are not met and several estimation procedures and indices have been developed in different countries in order to replace the R factor (cf. Chapter 4.1).

Determination of the R factor:

Erosivity for many locations in Africa must be estimated from available data of different origin:

- In some countries erosivity is calculated for single sites.
- In other countries regressions exist which may be extrapolated to the surroundings.
- For some countries national or regional erosivity maps (iso-erodent maps) are available.

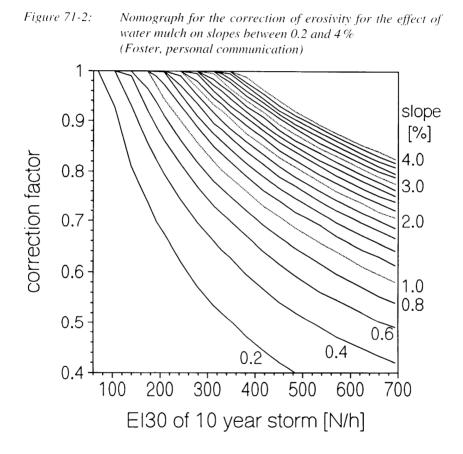
For countries where no erosivity data are available EI_{30} must be derived from rain data or rainfall distribution maps.

¹⁵ A software programm for digitizing and analyzing rainfall charts is available from: Dr. W. Martin, Bayerisches Geologisches Landesamt, Heßstr. 128, 80797 München, Germany.

The quality of the obtained erosivity values will be more reliable for sites or areas where EI_{30} was directly calculated from rain data (provided that the measurement period was sufficiently long). If regressions are used, the reliability decreases with increasing difference in climate and increasing distance from the stations of which the regressions were derived. National erosivity maps generally will be more precise than regional maps. For estimates of erosivity from rain data or maps, several regressions can be applied (Table 12-1Annex).

For the Sahel countries Roose's regression is recommended (Roose, 1977). The regression of Bresch (1993) was developed from 18 stations in Cameroon with 700 to 4000 mm/a. Its use is proposed for the semi-humid to humid parts of West and Central Africa. The equations for Zambia (Pauwelyn et al., 1988) and Zimbabwe (Stocking & Elwell, 1976) are based on a large and well described data base and are recommended for areas of southern Africa with comparable climate. For the highland areas of East Africa, the regression for Rwanda (Durand, 1983) and Kenya (Moore, 1979) can be used.

If regressions for near by neighbour countries are available, the user may decide whether the climate can be compared to these countries and whether these regressions may provide reasonable estimates.


In order to obtain EI_{30} for a particular location, look for the country in Table 71-1 and check if the site or a site nearby is listed. Table 71-1 indicates the reference tables in the Annex where you can find the EI_{30} values. If the site is not listed, look up a national or regional erosivity or rainfall map as indicated in Table 71-1¹⁶.

A given rain falling on low slopes (between 0.2 and 4%) is not as erosive as the same rain on steeper slopes due to the formation of a protective water mulch. Correction of erosivity on low slopes demands the erosivity of the 10 year storm $(\text{EI}_{30}/10)^{17}$. $\text{EI}_{30}/10$ was found to be more suited than mean annual erosivity as runoff depth is especially determined by the intensity of

¹⁶ Daily rain data for all station in Benin, Burkina Faso, Cameroon, Central African Repuplic, Chad, Congo, Gabon, Ivory Coast, Mali, Niger, Senegal and Togo are available from the Comité Interafrican d'Etudes Hydrauliques (CIEH), B.P. 369, Ouagadougou, Burkina Faso in two series. Serie I: Stations established until 1965. Serie II: 1965 – 1980.

¹⁷ An estimation method for $El_{30}/10$ is described in Annex 1.7.

individual storms (Renard et al., 1992). With $EI_{30}/10$ a correction factor can be read from Figure 71-2. Enter the chart vertically from the x-axis with the $EI_{30}/10$ of the site. Choose the gradient of the slope and read the corrected erosivity value by moving horizontally to the y-axis.

If hail is a frequent event as in some mountain areas, the annual erosivity should be corrected by estimating the percentage of annual precipitation as hail. This percentage of the annual erosivity must be multiplied by 2.5 (Hurni, 1980) and added to the remaining annual erosivity.

Example:

It is estimated that 20 % of the annual rain falls during hailstorms in an area with a mean annual erosivity of 800 N/h. 20 % of 800 N/h corresponds to 160 N/h. Multiplied by 2.5 = 400 N/h. Thus, the annual erosivity corrected for hail is: 640 N/h (= 80 %) + 400 N/h = 1040 N/h.

country	site	EI ₃₀ [N/h]				rain volume [mm]
		sites	regression map	national map	regional map	national
	Annex	1.1	1.2	1.3	1.4	1.5
Algeria					X	
	Gourari (Isser basin)	X				
	Heriz (Isser basin)	x				
	Madjoudj (Isser basin)	X				
	Sidi Mohamed	X				
	Cherif (Isser basin)					
Angola						X
Benin					Х	
Botswana						
Burkina Faso					Х	
	Bobo-Dioulasso	X	Х			
	Dori	X	Х			
	Fada-N'Gourma	X				
	Farako-Ba	X				
	Gampela near	1				
	Ouagadougou	X				
	Gaoua	X				
	Gonsé near	X	Х			
	Ouagadougou					
	Mogtedo	x				
	Niangoloko	X				
	Ouagadougou	X				
	Ouahigouya	X				
	Saria (Meteo)	x				
Burundi				Х		
Durunui	Mashitsi (Giheta)	x				
		1				1

Table 71-1: Available erosivity and rain data for single sites, countries and regions (see Annex 1.6 for the rain distribution and volume of single sites)

	Table	71-1:	continue
--	-------	-------	----------

country	site	EI ₃₀ [N/h]				rain volume [mm]
		sites	regression map	national map	regional map	national map
Cameroon				Х	Х	
	Bafia	X				
	Bamenda	X				
	Bangangte	X				
	Batouri	X				
	Dibamba	X				
	Douala	X				
	Dschang	X				
	Garoua	X				
	Maroua	X				
	Meiganga	X				
	Nachtigal	X				
	Ngaoundéré	X				
	Nkoundja	X				
	Penka Michel	X				
	(Bansoa)	1				
	Poli	X				
	Yaoundé	X				
	Yoko	X				
Central					Х	
African						
Republic						
Chad					х	
Chau	Deli	x			Λ	
Congo	1.A.H				х	
Egypt					X	
Equatorial					~	
Guinea					х	X
					X	
Ethiopia						
Gabon					X	
Gambia					X	v
Ghana					X	Х
Guinea					Х	
Guinea-Bis						X
Ivory Coas					Х	X
	Abidjan	X				
	Azaguié	X				
	Bouaké	X				

Table 71-1: continue

country	site		EI ₃₀	[N/h]		rain volume [mm]
		sites	regression map	national map	regional map	national map
Ivory Coast						
	Divo	X				
	Korhogo	X				
Kenya					Х	
	Eldoret	X				
	Katumani	X				
	(Machakos)					
	Kisumu	X				
	Kitale	X				
	Lodwar	X				
	Malindi	X				
	Mombasa	X				
	Nairobi	X				
	(Kabete)					
	Nakuru	X				
	Nanyuki	X				
	Narok	X				
	Voi	X				
	Lesotho	X				
	Liberia	X	Х			
	Libya	x				
Madagascar	2000 9 4				х	
muuugusen	Befandriana	X				
	MalawiMali	X				
Morocco				Х	Х	
Mauretania					Х	
Mocambique					Х	
Niger					Х	
	Allokoto	X	Х			
Nigeria	THORNO				х	x
ingena	Alore	x				
	Calabar	X				
	Enugu					
	Ibadan		Х			
l	Ik om		<i>/</i> x			
	Nsukka					
	INSUKKA					

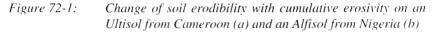
Table 71-1: continue

country	site	EI ₃₀ [N/h]				rain volume [mm]
		sites	regression map	national map	regional map	national map
Nigeria	Onitsha	X				
	Owerri	X				
	Port- Harcourt	X				
	Umudike	X				
Rwanda			Х			х
	Butare	X				
	Gakuta	X				
	Gisenyi	X				
	Kamembe	X				
	Kigali	X				
	(airport)					
	Ruhengeri	X				
Sao Tome an	d					Х
Principe						
Senegal					Х	
	Bambey	X				
	Séfa	X				
Sierra Leone					Х	Х
Somalia					Х	
South Africa				Х		
Sudan					Х	х
Tanzania			Х			
Тодо					X	
Tunisia					X	Х
Uganda			Х			
Zaire					Х	
Zambia			Х	Х		
	Chipata	X	X			
	Kabompo	X	X			
	Kabwe	X	X			
	Kafua Polder		X			
	Kasama		X			
	Mwinilunga		X			
	Ndola		X			
	Sesheke		X			

Table 71-1: continue

country	site	EI ₃₀ [N/h]				rain volume [mm]
		sites	regression map	national map	regional map	national map
Zimbabwe			Х	Х		
	Beibridge	X				
	Chipinga	X				
	Chisumbanje	X				
	Delt	X				
	Eastern District		Х			
	Enkeldoorn	X				
	Fort Victoria	X				
	Gokwe	X				
	Highveld		Х			
	Inyanga	X				
	Karoi	x				
	Lowveld		Х			
	Lupane	X				
	Middleveld		Х			
	Salisbury	x				
	Tjolotjo	X				
	Tuli	X				
Regional: Sahel			х	х		

7.2 Soil erodibility (K factor)


The soil erodibility factor K of the USLE expresses a soil's susceptibility to erosion. It is defined as '... a quantitative value experimentally determined. For a particular site, it is the rate of soil loss per erosivity unit as measured on a 'unit plot'. A 'unit' plot is 72.6ft long, with a uniform lengthwise slope of 9%, in continuous fallow, tilled up- and down-slope.' (Wischmeier & Smith, 1978). Crusts on the soil which form during rains have to be regularly destroyed by further tillage. In order to exclude influences of the previous vegetation, the unit plot is kept under barefallow for at least 2 years before determining crodibility. It is assumed, that by then soil loss is primarily a function of inherent soil properties and increases linearly with the rainfall erosivity. Erodibility is considered to be a specific constant for a soil and is calculated by:

$$K = \frac{A}{R \cdot L \cdot S \cdot C \cdot P} \quad [t \cdot h/N \cdot ha]$$
(22)

On a unit plot L, S, C and P equal 1 and the equation can be written as:

$$K = \frac{A}{R} [t \cdot h/N \cdot ha]$$
(23)

This basic concept of erodibility can also be applied to tropical soils. As shown in Figure 72-1a, erodibility initially increased after clearing of the vegetation. After 1000 to 2000 N/h (which corresponded to 2–3 years in the example) a steady erodibility value was approximated. However, on some soils erodibility may still increase or decrease after some years of barefallow. Erodibility of the soil in Figure 72-1b, for example, started to decrease slightly after 4600 N/h. This is the case if a surface horizon is partly or completely eroded and tillage mixes the underlying horizon with a lower erodibility more and more into the initial surface horizon. Tropical soils mostly have surface horizons of less than 15 cm depth. Partial or complete truncation

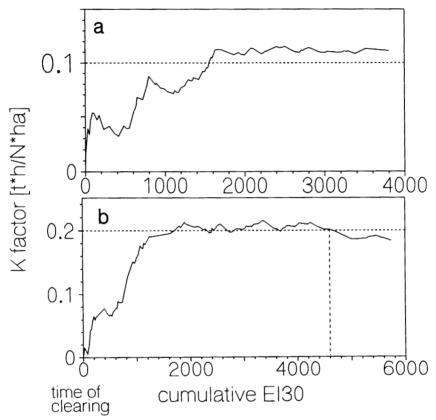


Table 72-1:

Total soil loss in 1 year and corresponding erosion depth on some Cameroonian soils under barefallow

soil	soil loss		
	[t/ha*a]	[cm/a]	
Andisol over basalt	698	5.8	
Kandiudalf on gneiss	293	2.4	
Tropohumult on gneiss	269	2.2	
Tropudult on gneiss	225	1.8	

of a barefallow soil is possible under tropical rain within a few years as shown by annual crosion depths of some Cameroonian soils (Table 72-1).

A decrease in erodibility occurs if the surface soil or subsoil contains coarser particles like quartz or iron oxide gravels. With the selective removal of the fine-carth, the gravel is enriched on the soil surface and protects the soil. Soil loss estimates for gravel-covered soil need, therefore, to be corrected for the protective influence of the cover. An increase in erodibility takes place if an unstable subsoil (e.g. with high sodicity) is more and more incorporated into the surface soil.

Measuring erodibility is time consuming and expensive. Wischmeier & Smith (1978), therefore, came up with an equation to calculate erodibility from simple soil properties which are measured routinely:

$$K = 2.77*10^{-6} M^{1.14}(12-OM) + 0.043(SC-2)$$
(24)
+0.033*(4-PC)

where

$$M[-] = (si+ffS) (100-cl)$$
(25)

with	cl	clay [%] silt [%]
	si	$\operatorname{silt}\left[\%\right]^{18}$
	ffS	very fine sand (0.05-0.1 mm) [%]
	OM	organic matter [%]
	SC	structure class [-]
	PC	permeability class [-]

The equation shows that soil erodibility increases with increasing silt plus very fine sand content of the soil. It decreases with increasing clay and organic matter content.

Structure class of a soil (Table 72-2) does not refer to the actual structure of the soil surface of a field but to structure after 2 years of barefallow. Therefore, some experience is needed in order to assign a structure class to a soil. Soils with an unstable structure develop coarse fragments after prolonged barefallow periods whereas stable soils maintain an aggregated surface. The coarser the final structure, the higher the structure class and erodibility.

¹⁸ very fine sand ffS: $100 - 50 \ \mu m$ equivalent diameter silt: $50 - 2 \ \mu m - "$ elay: $\leq 2 \ \mu m - " -$

structure class	structure	mean aggregate size [mm]
1	very fine crumb	< 1
2	fine crumb	1-2
3	medium to coarse crumb	2-10
4	blocky, platy or massive	> 10

<i>Table</i> 72-2:	Definition of structure	classes for use	in the	USLE (as modified
	by Schwertmann et al.,			

The permeability of a soil describes its infiltration capacity and ability to conduct water. Permeability classes (Table 72-3) must be determined for all horizons down to 80 cm depth. For each horizon a permeability class is chosen. The permeability class of the soil is determined by averaging the permeability classes of all horizons.

If the horizon with the lowest permeability is within the upper 40 cm, its permeability is counted twice before averaging. If the least permeable horizon is found within the upper 20 cm, it determines the permeability class of the soil.

permeability class	permeability	hydraulic conductivity [cm/d]	
1	very low	< 1	
2	low	1-10	
3	medium	10-40	
4	high	40-100	
5	very high	100-300	
6	extremely high	>300	

Table 72-3: Definition of permeability classes as used in the USLE (as modified by Schwertmann et al., 1987)

For field use, the permeability of a soil can be estimated by using information on biological activity or structure in the profile description. An example is given in Table 72-4. However, use of such data needs experience and should only be considered carefully. Table 72-4: Determination of permeability class by using profile information

description	permeability class		
very few pores	1		
few pores	2		
common pores	3		
many pores/ porous	4		
very porous	5		
very high biological activity, very porous	6		

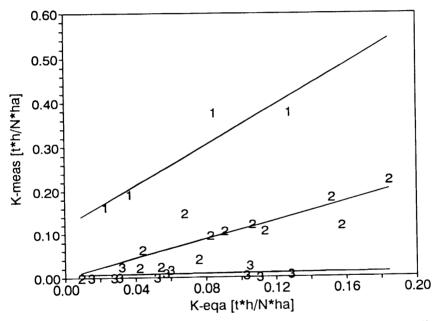
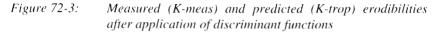


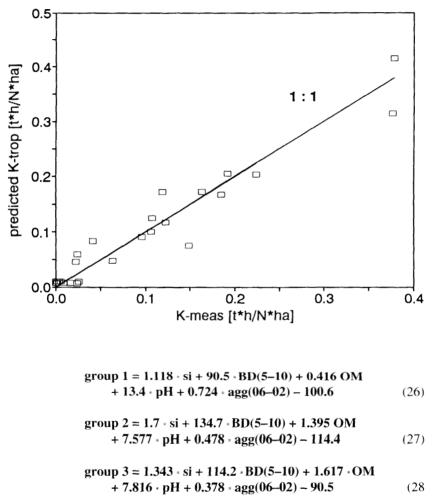
Figure 72-2: Comparison of calculated (K_{eqa}) and measured (K_{meas}) soil erodibility for 28 soils from Cameroon and Nigeria

Equation No. (24) was applied to soils with < 65% sand and < 35% clay (Wischmeier et al., 1971). K factors for soils beyond these limits need to be determined from a nomograph. However, a recent investigation indicated no quality loss if erodibility was calculated by the above equation for soils beyond these textural properties (Nill, 1993).

Erodibility measurements on 28 tropical soils from Cameroon and Nigeria showed that equation (24) can not be applied to all tropical soils but needs correction factors for 3 different soil groups (Figure 72-2). For part of the soils (group 1), erodibility as calculated by equation (24) underestimated the measured erodibility whereas group 3 was clearly overestimated. For group 2 (about half of the soils), calculated erodibility agreed well with measured erodibility.

A discriminant analysis can distinguish between unknown soils by using two discriminant functions¹⁹. 89 % of all soils were correctly classed by using:


- bulk density of 5-10 cm depth [g/cm³]; measured one day after the soil had been tilled with a hand hoe to seedbed conditions of maize
- silt content of the surface soil [%]
- organic matter content of surface soil [%]
- pH in water of the surface soil; measured in 1 : 2.5 soil/water suspension after 18 h
- amount of air-dry aggregates of the surface soil (0-5 cm) with 0.6-0.2 mm diameter [%] measured by dry-sieving


Wrong classification only becomes dangerous if a soil's erodibility is underestimated. If it is overestimated, too much conservation efforts may be the result which means an exaggerated input of labour and money but no virtual danger.

All soils with a very high erodibility (group 1) were correctly classed. 9% of low erodible soils (group 3) were classed into group 2 and would receive more conservation than necessary. 17% of the medium to high erodible soils (group 2) were assigned to group 3 and would receive insufficient conservation.

Based on the two discriminant functions, Fisher's Linear Discriminant Functions were derived which facilitate classification. They were:

$\frac{19}{19} \text{function 1} = 12.03*BD(5-10) + 0.169*si + 0.265*OM - 1.62*pH - 0.066*agg(06-02) - 5.62$ eigenvalue = 1.08, Wilks' Lambda = 0.19 sign. = 0.0001
function $2 = 0.25 \text{ s} \text{OM} + 0.085 \text{ s} \text{agg}(06-02) + 0.0958 \text{ s} \text{i} + 3.18 \text{ s} \text{BD}(5-10 + 0.717 \text{ s} \text{p} \text{H} - 9.37 \text{ s} \text{H})$
eigenvalue = 1.08 , Wilks' Lambda = 0.48 sign. = 0.0028
with $BD(5-10)$ bulk density in $0-5$ cm [g/cm ³]
si silt [%]
OM organic matter [%]
agg(06-02) dry sieved aggregates with 0.6 to 0.2 m diameter [%]
The group centroids for function 1 and 2, respectively, were -2.6 and 0.93 for group 1, 0.938 and 0.77 for group 2 and -0.76 and -1.18 for group 3.

In order to assign a soil to one of the groups, the three functions must be solved. The soil belongs into the group whose function yields the highest value. Once the group is selected, the erodibility of the soils (K-trop $[t \cdot h/N \cdot ha]$) can be calculated by the following regressions:

group 1:
$$K_{trop} = 2.3 \cdot K_{eqa} + 0.12$$
 (29)
 $r^2 = 0.87^*, n = 4$
group 2: $K_{trop} = 1.1 \cdot K_{eqa}$ (30)
 $r^2 = 0.74^{**}, n = 13$
group 3: $K_{trop} = 0.03 \cdot K_{eqa} + 0.006$ (31)
 $r^2 = 0.02 n.s., n = 11$

Applying the three regressions to the set of tropical soils mentioned above, explained 92% of the variation in measured soil erodibility (Figure 72-3). The third regression was not significant. However, soils in group 3 have very low erodibilities (maximum $K_{meas} = 0.026$) and prediction errors may be tolerated.

How can the typical soils for groups 1 to 3 be characterized? Table 72-5 shows average properties for the groups. Group 1 contains soils with more sand, less clay and a higher amount of aggregates in the size fraction of 0.6 to 0.2 mm and have a slightly higher pH than soils in group 2 and 3. Bulk density is lower than in group 2. The surface soil of group 1 readily seals. Their low bulk density and high amount of transportable material enables high soil loss rates. They are characterized by an early occurring runoff, high runoff rate and coefficient. The agronomically very important volcanic ash soils belong to this group. An alternative equation to calculate erodibility was developed by El-Swaify & Dangler (1977) for a group of seven residual soils and five volcanic ash soils from Hawaii²⁰:

²⁰ dimension for K: [ton * acre * hour/ hundreds of acre * foot tons * inches]: in order to arrive at [t * h/N * ha] multiply with 1.3.

Table 72-5:	Average runoff, soil loss and soil properties for the three
	erodibility groups (values with different letters are significantly
	different at the 0.05 level);

parameter	means for:			
	group 1	group 2	group 3	
sand [%]	52 ^a	43 ^a	31 ^a	
very fine sand [%]	2.8 ^a	3.1 ^a	3.0 ^a	
silt [%]	16 ^a	18 ^a	17 ^a	
clay [%]	32 ^a	40 ^a	52 ^b	
organic matter [%]	4.2ª	3.8 ^a	6.3ª	
рН	5.3ª	5.1 ^a	5.0 ^a	
bulk density (5-10 cm) [g/cm ³]	0.87 ^{ac}	1.06 ^{ab}	0.87 ^c	
bulk density (0-10 cm) [g/cm ³]	0.88^{ac}	0.97 ^{ab}	0.79	
aggregates (0.6-0.2 mm) [%]	39 ^a	25 ^b	22 ^b	
Kmeas [t*h/N*ha]	0.2775^{a}	0.0969 ^b	0.0077 ^c	
start runoff [s]	860a	1349 ^a	3873b	
mean runoff rate [l/min*m ²]	3.1 ^a	2.2 ^a	0.3 ^b	
maximum runoff rate [l/min*m²]	5.2 ^a	4.3 ^a	0.8	
runoff coefficient [% of rain]	32 ^a	23 ^a	3b	
soil loss [t/ha]	8.9^{a}	2.9^{a}	0.1 ^c	
mean soil loss rate [g/l*min]	33 ^a	23 ^a	3 ^b	
maximum soil loss rate [g/l*min]	49 ^a	36 ^a	6 ^a	

 $K = -0.0397 + 0.00311 \cdot LT 250\mu + 0.00043 \cdot MH$ $+ 0.00185 \cdot BS + 0.00258 \cdot si - 0.00823 \cdot sa$ (32)

with LT250 m percentage of soil which passes a 0.25 mm sieve by wetsieving

MH (sand > 0.1 mm) (silt + very fine sand)

BS base saturation in 1 n NH₄oAc at pH 7

si percent silt

sa sand > 0.1 mm

Soils in group 3, as the other extreme, tend to be more clayey and richer in organic matter than soils in group 1 and 2. Bulk density is slightly lower than in group 2 and there are less aggregates of 0.6 to 0.2 mm diameter. These soils hardly seal and runoff starts very late if rain falls on dry soil. Soil loss

under natural rain occurs especially after sequences of several storms which presaturate these soils. Their runoff-soil loss behaviour is not determined by surface sealing but by the permeability of the profile. The poor relationship between surface soil and profile properties explains the insignificant regression in Figure 72-2 for this group. Drop impact and storm have little influence on soil loss. As runoff in group 3 requires a presaturation of the soil, occasional rains during the dry season are of no danger. Especially clayey, iron oxide rich soils from basic parent rock are found in this group.

Soils in group 2 tend to have more silt and very fine sand, along with medium clay and sand contents (Table 72-5). The organic matter content is lower than in the other groups and bulk density higher. Their surface seals as in group 1 but sealing and runoff occurs later during a rain resulting in lower mean runoff and soil loss. This is indicated by smaller differences of maximum runoff and soil loss rates of group 1 and group 2 soils compared to mean rates. It can be assumed that maximum runoff is reached at the end of a storm for soils in group 2. Group 2 had 71% of the mean runoff rate of soils in group 1 but reached 83% of the maximum runoff rate of group 1. The values for mean and maximum soil loss were 70 and 74%, respectively. Thus, with increasing rain volume the difference in runoff and soil loss between group 1 and 2 became smaller. However, mean and maximum soil loss rate did not differ as much as mean and maximum runoff rate. This suggests that runoff increased more than soil loss. Typic soils in group 2 are formed from metamorphic basement rocks.

Soil taxonomy gives some, though not very safe, indications. Oxisols frequently are to be found in group 3 although some occur in group 2 as well. Ultisols, Inceptisols and Alfisols are especially found in group 2. However, some soils in group 2 also have low erodibilities (Figure 72-2) and rather stable structure.

Determination of the K factor:

1. Calculate K_{eqa} according to equation (24). Silt, clay, very fine sand and organic matter content are taken from soil analysis of the surface soil.

Structure class is chosen from Table 72-2. If doubts exist which class to choose, erodibility can be calculated for two different classes in order to receive the range in soil loss.

Permeability is calculated as explained on page 96 and shown in the following example:

	soi	11:			soi	12:	
horizon	depth [cm]	permea- bility	permea- bility class	horizon	depth [cm]	permea- bility	permea bility class
А	0-10	very high	6	А	0-10	very high	5
Btl	10-50	medium	3	A/B	10-25	high	4
Bt2	50-150	medium	3	Bt1	25-60	low	2 X 2
				BC	60-150	medium	3
mean per	meability	of soil:	4	mean pe	rmeabilit	y of soil:	3.2

In soil 1, the lowest permeability corresponds to the deepest horizon within 80 cm depth and permeability class of the soil is calculated as mean permeability of all horizons to 80 cm depth. In soil 2, horizon Bt1 has the lowest permeability and lies within 40 cm depth. Therefore, it is counted twice (sum of all classes/number of horizons = 16/5 = 3.2).

2. In order to decide into which erodibility group a soil belongs, equations (26) to (28) must be solved. The group with the highest result is assigned to the soil.

3. Erodibility (K_{trop}) is calculated for group 1 and 2 soils from equation (29) and (30), respectively, or can be read from Table 72-6. The regression for group 3 soils (equation (31)) was not significant. It is recommended to use the maximum erodibility $K_{meas} = 0.026$ found for group 3 soils. As 30% of the group 3 soils had erodibilities between 0.01 and 0.026 and 70% of the soils erodibilities < 0.01, most of the group 3 soils are overestimated by this procedure.

K _{eqa}	K	trop	K _{eqa}	К	trop
	group 1	group 2		group 1	group 2
0.001	0.122	0.001	0.31	0.83	0.34
0.002	0.125	0.002	0.32	0.86	0.35
0.003	0.127	0.003	0.33	0.88	0.36
0.004	0.129	0.004	0.34	0.90	0.37
0.005	0.132	0.006	0.35	0.93	0.39
0.006	0.134	0.007	0.36	0.95	0.40
0.007	0.136	0.008	0.37	0.97	0.41
0.008	0.138	0.009	0.38	0.99	0.42
0.009	0.141	0.010	0.39	1.00	0.43
0.01	0.14	0.01	0.40	1.00	0.44
0.02	0.17	0.02	0.41	1.00	0.45
0.03	0.19	0.03	0.42	1.00	0.46
0.04	0.21	0.04	0.43	1.00	0.47
0.05	0.24	0.06	0.44	1.00	0.48
0.06	0.26	0.07	0.45	1.00	0.50
0.07	0.28	0.08	0.46	1.00	0.51
0.08	0.30	0.09	0.47	1.00	0.52
0.09	0.33	0.10	0.48	1.00	0.53
0.10	0.35	0.11	0.49	1.00	0.54
0.11	0.37	0.12	0.50	1.00	0.55
0.12	0.40	0.13	0.51	1.00	0.56
0.13	0.42	0.14	0.52	1.00	0.57
0.14	0.44	0.15	0.53	1.00	0.58
0.15	0.47	0.17	0.54	1.00	0.59
0.16	0.49	0.18	0.55	1.00	0.61
0.17	0.51	0.19	0.56	1.00	0.62
0.18	0.53	0.20	0.57	1.00	0.63
0.19	0.56	0.21	0.58	1.00	0.64
0.20	0.58	0.22	0.59	1.00	0.65
0.21	0.60	0.23	0.60	1.00	0.66
0.22	0.63	0.24	0.61	1.00	0.67
0.23	0.65	0.25	0.62	1.00	0.68
0.24	0.67	0.26	0.63	1.00	0.69
0.25	0.70	0.28	0.64	1.00	0.70
0.26	0.72	0.29	0.65	1.00	0.72
0.27	0.74	0.30	0.66	1.00	0.73
0.28	0.76	0.31	0.67	1.00	0.74
0.29	0.79	0.32	0.68	1.00	0.75
0.30	0.81	0.33	0.69	1.00	0.76

Table 72-6: Conversion of K_{eqa} to K_{trop} for soils in group 1 and 2 (derived from equations (29) and (30))

If the analytical data for the solution of the discriminant functions are not available the experience that volcanic ash soils (Andisols) are often in group 1, soils from acid basement rocks are frequently in group 2 whereas soils from basalt and other basic parent rock are often in group 3 can be used for a crude soil loss estimate.

7.3 The topographic factor (LS factor)

Soil erosion is favoured with increasing slope length and -gradient²¹ (cf. Chapter 4.3). The slope length factor (L) gives soil loss on a given slope length relative to soil loss on the USLE unit plot. The factor for gradient (S) gives the ratio of soil loss on any given slope to that of a 9% slope. The combined topographic factor (L*S) allows to adjust soil loss on a given slope length, gradient and slope form to that of the control plot. It is calculated by (Wischmeier & Smith, 1978):

$$LS = \left(\frac{1}{22.1}\right)^{m} * (65.41 * \sin^{2}\alpha + 4.56 * \sin\alpha + 0.065) [-]$$
(33)

with

l slope length [m] m slope length exponent [-] a gradient [°]

or

with

$$LS = \left(\frac{1}{22.1}\right)^m * s/9 * \sqrt{(s/9)} [-]$$
s gradient [%]
(34)

The slope length exponent (m) depends on the gradient and is smaller for low slopes than for steep slopes (Table 73-1).

²¹ Gradient can be measured by inclinometers or specially equipped compasses. A very simple device to measure slope - length and - gradient is illustrated in Annex 2.1.

gradient [%]	m
< = 0.5	0.15
0.6-1.0	0.20
1.1-3.4	0.30
3.5-4.9	0.40
> = 5	0.5

Table 73-1: Slope length exponent (m) for different gradients

On low slopes, m becomes smaller because low obstacles as rills and clods (surface roughness) produced by tillage slow down runoff. Thus, more water stays on the field for a longer time and water depth on the field increases. Time for infiltration is longer and at least part of the soil surface is protected against drop impact by a water layer. LS factors can directly be read from Figure 73-1. In order to adjust for less splash erosion on low slopes and the protective water layer, an additional correction of the annual erosivity is proposed on low slopes in the successor model of the USLE, – the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1992). This correction factor can be obtained from Figure 71-2.

An exponent m < 1 shows that soil loss increases to a smaller extent than slope length. Nevertheless, in contrast to erosivity, soil erodibility, and slope-gradient, slope length can be influenced easily by man and is an important parameter for soil loss reduction. Slope length in the USLE is defined as the distance from the point where runoff begins to the point where deposition occurs or where runoff enters a well-defined channel (Wischmeier & Smith, 1978). As demonstrated in Figure 73-2, the lower slope end may be presented by a small ditch or ridge along a field border, a road ditch or a drainage channel. In case of small rivers, the slope end generally does not correspond to the river border because deposition generally starts earlier. The upper slope end can be formed by the watershed boundary or by ridges, channels or deposition zones which limit a slope above. In general, the definition of an upper slope limit is met if no runoff from slope segments above enters the slope.

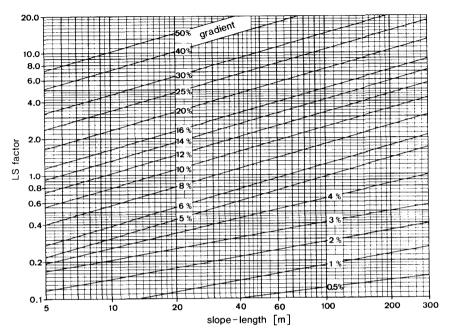
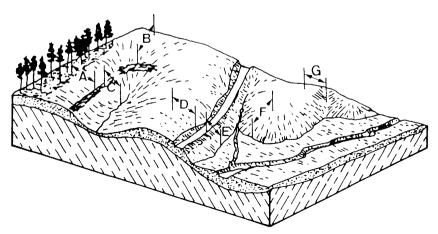



Figure 73-1: Diagram for the determination of LS factors

Figure 73-2: Examples for the determination of erosive slope-length (after Dissmeyer & Foster (1980) as modified by Schwertmann et al. (1987)

Runoff volume and velocity increase along the slope. This causes an increase of soil loss per unit area with increasing distance down-slope. In order to calculate soil loss on a segment of the slope, the slope is divided into a small number of segments i with equal length and approximately equal gradient. The segment on top of the slope corresponds to i = 1. The ratio of soil loss on each segment to soil loss of the total slope can be described by:

$$A_{i} = \frac{i}{N^{(m+1)}} \frac{-(i-1)^{(m+1)}}{N^{(m+1)}} [-]$$
(35)

with	Ai	relative soil loss of segment i [-]
	i	segment number
	Ν	number of segments with equal length
	m	slope length exponent

On a uniform slope of 6% (m = 0.5), for example, which was divided into 3 segments of equal length, the upper segment would provide 19%, the middle and lower segment 35 and 46% of the total soil loss on the slope. Results of equation 35 for different slope exponents and segment numbers are given in Table 73-2.

As soil loss is not equally distributed along a slope, slope form as well determines soil loss. On a concave slope, the up- and mid-slope parts are steeper than the foot-slope whereas on a convex slope the foot-slope has a higher gradient. The large runoff volume which arrives down-slope meets a low gradient on the concave but a high gradient on the convex slope. Submitting the same average gradient, soil loss on convex slopes is, therefore, more severe than on concave slopes.

number of segments	segment number	slope exponent								
		m=0.5	m=0.4	m=0.3	m=0.2	m=0.15				
2	1	0.35	0.38	0.41	0.44	0.45				
	2	0.65	0.62	0.59	0.56	0.55				
3	1	0.19	0.21	0.24	0.27	0.28				
	2	0.35	0.35	0.35	0.35	0.34				
	3	0.46	0.43	0.41	0.39	0.37				
4	I	0.13	0.14	0.16	0.19	0.20				
	2	0.23	0.24	0.24	0.25	0.25				
	3	0.30	0.29	0.28	0.27	0.27				
	4	0.35	0.33	0.31	0.29	0.28				
5	1	0.09	0.11	0.12	0.14	0.16				
	2	0.16	0.17	0.18	0.19	0.19				
	3	0.21	0.21	0.21	0.21	0.21				
	4	0.25	0.24	0.23	0.22	0.22				
	5	0.28	0.27	0.25	0.23	0.23				

Table 73-2: Soil loss of slope segments with equal length on uniform slopes relative to soil loss of total slope for different number of segments and different slope exponents (based on equation (35))

Determination of the LS factor:

Read the LS factor for uniform slopes from Figure 73-1²². In order to correct soil loss for the effect of slope form, an irregular slope is divided into a small number of equal length segments with approximately uniform gradient. LS values for each segment are chosen from Figure 73-1 by using the slope length of the entire slope and the gradient of the segment. The so derived LS values are weighted by multiplying them with the values from Table 73-2. Summation of the products gives the LS factor for the whole slope.

Example:

A 60 m long convex slope is divided into three 20 m long segments with uniform gradient of 10, 15 and 20% for the up-, mid- and down-slope segment (segments 1,2 and 3 in Table 73-3), respectively. The LS factor for each segment is chosen from Figure 73-1 by using a slope length of 60 m and the gradient of each segment (column 3, Table 73-3):

²² A conversion table from degrees to percent is given in Annex 2.2.

1	2	3	4	5	6	7
segment	gradient	LS factor	weighting factor	corrected LS factor	K factor	corrected KLS factor
1	10	1.92	0.19	0.37	0.02	0.007
2	15	3.53	0.35	1.24	0.13	0.16
3	20	5.43	0.46	2.50	0.21	0.53
			sum:	4.11		0.70

Table 73-3: Example for the consideration of an irregular slope with
changes in soil erodibility in the USLE

These LS factors are weighted by the values from Table 73-2 for a slope $\geq 5\%$ (m = 0.5) and 3 segments (column 4 in Table 73-3). The products of all segments (column 5) are summed up and give the LS factor (= 4.11) for the slope. This means that on a soil on this slope, soil loss would be 4.11 times the soil loss of the same soil on a 22.1 m long slope of 9%.

Soil erodibility changes on a slope can be considered by the same procedure. Soil erodibility for each segment (column 6) is multiplied with the weighted LS factors for the segments (column 5) which gives a KLS factor for the slope of 0.7 (column 7).

Changes of the crop and management factor are dealt alike as long as no deposition is induced by the changes.

The slope length factor also allows the calculation of a maximum length if the maximum tolerable soil loss (T) is known:

$$LS = \frac{T}{R * K * C * P}$$
[-] (36)

If LS is known, the maximum length can be chosen from Figure 73-1. A tolerable LS value of 2 on a 10% slope, for example, yields a maximum slope length of 65 m in order to keep soil loss within the tolerable limits.

7.4 The cover and management

The cover and management factor C of the USLE gives the ratio of soil loss on a cropped plot to soil loss on a barefallow control plot of identical size, slope length, gradient and soil. In contrast to the barefallow control plot where soil loss per unit erosivity (= crodibility) is supposed to be a constant (see Chapter 7.2), soil loss on a cropped plot is subject to changes over the year which depend on crop growth and management. After planting, the growing canopy increasingly protects the soil surface while litter from senescent parts falls to the ground and forms a mulch layer. The weeds in the crop stand develop additional canopy cover and act as mulch after weeding, if left in the field. The protection of the soil surface depends on the amount and quality of coverage. Both are crop and management specific.

However, an uncovered soil surface is only endangered if crosive storms occur. Therefore, in order to calculate the influence of crop cover on soil loss, the distribution of erosivity during the year must also be considered. As the annual erosivity distribution is site specific, the same cropping system will cause different soil loss at different locations because of different distribution of erosive rains. The mean annual erosivity distribution is then assigned to the different crop stages (Table 74-1).

Table 74-1:	Crop stag	es as	defined	for	the	USLE (Wischmeie)	· &	Smith,
	1978)							

crop stage	description
F – SB	rough fallow (F) after primary tillage (coarse tilth) to seedbed (SB) preparation (= secondary tillage; fine tilth)
SB – 10	after seedbed preparation until 10% canopy cover of the crop (seedbed to germination)
10-50	10% canopy cover until 50% cover (establishment)
50-75	50% to 75% canopy cover (development)
75 – H	75 % canopy cover to harvest
H – F	harvest to next plowing or seeding

For each crop stage (i) a soil loss ratio (SLR) is calculated as soil loss of the cropped plot (Acrop_i) relative to soil loss of the control plot (Abare_i) during the same period:

$$SLR_{i} = \frac{Acrop_{i}}{Abare_{i}} [-]$$
(37)

The soil loss ratios indicate the degree of soil protection by a specific crop stage. They are independent of site specific climate.

In order to avoid short term soil loss variations, the longterm mean soil loss of the barefallow is used instead of the actually measured soil loss. It is calculated by:

Abare_i =
$$R_i * K (t/ha)$$
 (38)

with K soil erodibility [t*h/N*ha] R_i mean erosivity during crop stage i [N/h]

The term $(R_i * K)$ gives the mean soil loss of the barefallow control plot during crop stage i. In order to reflect the site specific erosivity distribution, the erosivity during crop stage i relative to the annual erosivity is calculated:

$$\operatorname{Rrel}_{i} = \frac{R_{i}}{R} \qquad [-] \tag{39}$$

withRrel,proportion of annual R (relative erosivity) during
crop stage i [N/h]Rmean annual erosivity [N/h]

The soil loss ratios for each crop stage of a rotation are multiplied by the corresponding Rreli's. Summation of the products and subsequent division by the duration of the rotation results in an average annual C factor:

$$C = \frac{\sum_{j=1}^{t} \sum_{j=1}^{n} (Rrel_{i} * SLR_{i})_{j}}{t}$$
[-] (40)

with	n	number of crop stages i per year j
	t	duration of the rotation [a]

An example for the calculation of a groundnut – maize rotation is given in Table 74-2. Mean planting date of groundnut and maize was 15th March and 5th August, respectively.

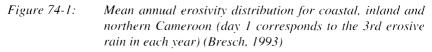
 Table 74-2: Calculation of the C factor for a groundnut (1st growing season)

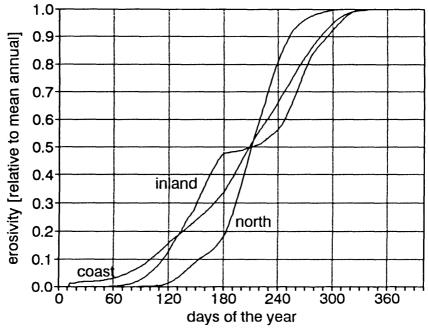
 - maize (2nd season) system as measured for 1 year in Douala

column	1	2	3	4	5	6
	crop stage	duration [d]	cumul. erosivity [relative to	relative erosivity (Rrel _i)	ratio	column 4 * 5 (C _i)
		· · · · · · · ·	mean annual]	[-]	[-]	
ground-nut	SB – 10	16	0.06	0.01	1.52	0.02
	10-50	28	0.12	0.07	0.63	0.04
	50-75	7	0.14	0.02	0.02	0.00
	75 – H	37	0.24	0.10	0.07	0.00
	H – SB	55	0.54	0.29	0.03	0.00
	SB – SB	143		0.49		0.06
maize	SB – 10	31	0.68	0.14	0.56	0.08
	10-50	19	0.79	0.11	0.51	0.06
	50-75	8	0.84	0.06	0.32	0.02
	75 – H	44	0.99	0.15	0.05	0.01
	H – SB	120	1.05	0.05	0.00	0.00
	SB – SB	222		0.51		0.17
	Total	365		1		0.23

The crop stage duration is taken from the growth curves of the various crops (Annex 3.3). The Rrel_i's (column 4) are obtained from the mean annual distribution of erosivity (Table 74-3). Alternatively, the erosivity distribution can be estimated by calculating the relative <u>rainfall</u> distribution²³.

The C factor is calculated by summation of the product of the relative erosivity (column 3) times the soil loss ratio (column 4) for each crop stage (column 5).


²³ Estimation of the erosivity distribution from rainfall distribution for 18 stations in Cameroon resulted in a mean and maximum error of 1.3 and 12.6%, respectively (Bresch, 1993).


High contribution to the C factor results from crop stages where little surface cover coincides with high erosivity: This was the case for crop stage SB – 10 of maize which received 14% of the annual erosivity (Rrel_i = 0.14) in Table 74-2 in a state of little cover. 35% of the annual soil loss (column 6 in Table 74-2: 0.08/0.23) occurred during this period. The soil loss ratios are generally high during the initial crop stages when cover is poor. An SLR > 1 for crop stage SB – 10 of groundnut (SLR = 1.52) signifies that soil loss on the cropped plot exceeded the mean soil loss of the barefallow plot during this crop stage. This was due to compaction of the cultivated plot during the planting operation and sealing by early rains. On the barefallow plot, seals after a rain are raked (per definition) and no planting takes place.

The duration of the crop stages shows the faster growth of groundnut which needed 88 days from seedbed (SB) to harvest (H) compared to 102 days for maize. Groundnut in the example received 49% of the annual erosivity (sum RRi of groundnut (SB to SB) = 0.49) compared to 51% for maize (sum RRi (SB to SB) = 0.51). The contribution of groundnut to the C factor was 0.06 (SB to SB) which corresponds to 26% compared to 74% (0.17) for maize. Thus, in the example, groundnut was more protective for the soil than maize. Protection measures (e.g. mulch) would thus be more effectively applied during maize cultivation.

Dec	335 1.00	336-1.00	-			_	_	341 1.00	342 1.00	343 1.00	344 1.00		_	_			-			_		_	-	-			_		-	363 1.00	-	365 1.00
Nov	305 0.96	0.97	0.07		1.9.0	. //6.0	<u> </u>	311-0.98	312 0.99	313 0.99	314 0.99	0.99	66.0		66.0	66.0	66.0	0.99						-	-	\sim	-			333 1.00	334 1.00	
Oct	274 0.85				_	_		280 0.87	281 0.88	282 0.88	283 0.88	284 0.89			287 0.90											-	_	300 0.95	301 0.95	302 0.96	303 0.96	304-0.96
Sep	244 0.68	0.68	00.0	0.09	0.69			250 0.72	0.73	0.74	253 0.75	254 0.75	255 0.76		257 0.77		259 0.77		261 0.78	262 0.78	263 0.79					268 0.82	269 0.83	270 0.84	271 0.84	272 0.85	273 0.85	
Aug	713 0 54		t			217 0.55	218 0.55	219 0.55			222 0.57		224 0.58	225 0.58	226 0.59		228 0.60		230 0.61	231 0.62	232 0.62	233 0.62	234 0.63	235 0.64	236 0.64	237 0.65	238 0.66	239 0.66	240 0.66	241 0.66	242 0.67	243 0.67
lul	182 0 35		CC.U COI	<u> </u>	-	186 0.36	187 0.36	188 0.37		-			193 0.40	194 0.41	195 0.41	196 0.42	197 0.44	198 0.44	199 0.45	200 0.45	201 0.46	202 0.47			205 0.48	206 0.49	207 0.51	208 0.51	209 0.52	210 0.52	211 0.52	212 0.53
Inn	FC 0 CS1		-	<u> </u>	<u> </u>	156 0.25	157 0.26	-		_							167 0.29	168 0.29	169 0.29	170 0.30		172 0.31			175 0.32	176 0.32	177 0.32	178 0.33	179 0.33	180 0.33	181 0.34	
Mav	910101		01.0 221	123 0.16	124 0.17	125 0.18	126 0.18		128 0 18	-				133 0.20							140 0.21		142 0.21		144 0.22	145 0.23			-			
Anr	01 000	-	-	93 0.08	94 0.09	95 0.09					_													113 0.14			_	-	118 0.16	_	-	
Mar		00 0.03	61 0.03	62 0.03	63 0.03	64 0.03								72 0.04	73 0.05		75 0.05												-			
E.A	00	70.0	33 0.02	34 0.02	35 0.02		20:0 25		20.0 66		-	-											52 0.07	20.0 65				58 0.03		20-00 V (2		
-	lin	0.00	0.00	0.00	0.00	0.00		00.0	0.00	0.00	10.0	5.0			5.0	20.0	20.0	0.0	0.0	10.0											20.0	0.02
-	day	_	с1 	ŝ	-	- 17	n 4	с I	~ 0	×	ъ	2 :	= =	4 2		<u>t v</u>	- 4	2 [2		30	3 7	56	1 8	17	t č	3 6		à ĉ	96		R

Table 74-3: Annual erosivity distribution for Douala/Cameroon

The difference of erosivity distributions is shown by the three sites from Cameroon in Figure 74-1. On the coast (Douala), the very humid ocean climate has rather uniformly distributed erosivity during 9 months. The dry season lasts about 3 months. The inland of southern Cameroon (Yaoundé) has two distinct rainy seasons separated by a dry spell whereas in the north (Maroua) nearly all erosivity is concentrated in a few months.

To establish soil loss ratios for different crops and management systems needs field measurements which are costly and time consuming. Soil loss ratios for the major crops²⁴ in the USA have been experimentally determined for a range of management options²⁵.

²⁴ maize, soybeans, cottons small grain, sorghum, wheat, ryegrass, potatoes, pasture, range and idle land and forest

²⁵ plow, notill, chisel plow, contour tillage, stripcrop, ridging, with and without mulch or residues

In order to calculate soil loss for further crops and systems, Wischmeier (1975) proposed to divide the influence of the cropping system into subfactors. He defined a subfactor for:

- 1. the influence of the canopy cover (c1)
- 2. the influence of mulch or of vegetation close to the soil surface (c2)
- 3. tillage and residual effects of the former vegetation (c3)

The C factor is calculated as the product of all 3 subfactors:

$$C = c1 * c2 * c3 \tag{41}$$

For tropical countries, the subfactor method is especially valuable because for many crops no experimentally determined data are available. A further complication is the large variety of small holder systems which are difficult to compare to American standards (e.g. hand tillage, mixed cropping, heaping and bedding etc.).

Data for the subfactor calculation also are often not available but can rather easily be collected. The procedure for subfactor determination is subsequently explained.

Subfactor cl

The influence of canopy is calculated by (Foster, 1982):

$$c_1 = 1 - CC_e * e^{-0.34*Hc}$$
 [-] (42)

with

CCe	effective canopy coverage [-]
He	effective canopy height [m]

The canopy height effects the velocity of drops falling off the leaves and thereby the energy of the drop impact on the soil. As drops may be formed by lower and higher leaves on a plant and drops from higher leaves may be intercepted by the leaves below, the effective canopy height is used which represents an average value. For practical considerations, H_e is estimated as:

$$H_c = 0.6 * H_{max}$$
 [m] (43)

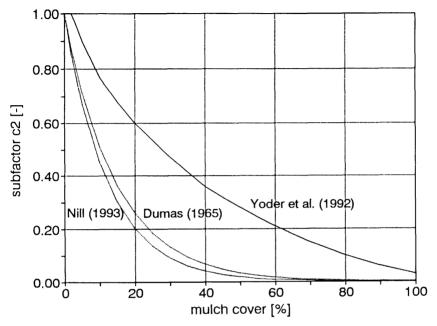
with H_{max} mean height of the uppermost horizontal leaf of the plants in a crop stand [m]

The second variable in equation No. (42) – canopy cover – enters also as <u>effective</u> canopy cover. Drops which fall from the canopy may not directly hit the soil surface but may fall on mulch material underneath without causing soil loss. As a cover from mulch is more protective than from canopy, the effect of mulch is considered to 100% whereas only the canopy cover with <u>no</u> mulch underneath, i.e. the <u>effective</u> canopy cover (CCe), is taken into account. It is calculated by:

$$CC_{e}[-] = CC_{*}(1-MC)[-]$$
 (44)

with CC canopy cover [-] MC mulch cover [-]

If canopy cover is 80%, for example, with a mulch cover of 20%, the <u>effective</u> canopy cover is 0.8 * (1-0.2) = 0.64.


Subfactor c2

The influence of mulch cover (c2) can be calculated by (Yoder et al., 1992):

$$c2 = e^{-0.035 \text{ MC}} [-]$$
 (45)

Equation No. (45), which reflects the curve used by Wischmeier & Smith (1978) gives a conservative estimate of the mulch effect. Measurements by numerous other authors (Dumas, 1965; Kainz, 1989; Nill, 1993) revealed a higher efficiency (cf. Figure 74-2). Nevertheless, it is indicated to continue using equation No. (45) in order to arrive at a cautious estimate of soil loss reduction by mulch. Some simple methods for soil cover measurements are illustrated and explained in Annex 3.2.


Figure 74-2: Influence of mulch on soil loss as evaluated by different authors. Subfactor c2 gives the ratio of soil loss on a coveredplot to an uncovered plot.

Subfactor c3

Not much data are available to determine subfactor c3 for tropical agrosystems which accounts for the residual effect of the previous vegetation. Own measurements resulted in an average c3 of 0.8 for the 1st year after forest fallow and 0.4 after grass fallow (Table 74-4). A mean c3 of 0.67 for the first 2 years after grass fallow can be estimated from data of Kilewe & Mbuvi (1987) by the ratio of erodibility during the first 2 years and erodibility of the 3rd to 5th year. For practical purposes, the c3 values in Table 74-9a are proposed. The influence of the grass fallow residues comes very close to the residual effects described by Wischmeier & Smith (1978) for turned sod. For the first year after plowed grassland they proposed 0.4, 0.45, 0.5 and 0.6 for crop stages SB – 50, 50–75, 75 – H and H – SB, respectively. The same crop stages during the second year were weighted by 0.8, 0.85, 0.9 and 0.95.

Figure 74-3: Subfactor c1 as influenced by effective canopy cover and crop height (after Foster, 1982 and Wischmeier, 1975)

Table 74-4:	<i>Residual effects (c3) of savannah and forest fallows as estimated</i>
	by the coefficient of erodibility during the first year of bare-
	fallow (K _{first}) and the finally determined K factor after several
	years of bare-fallow (K)

fallow type	K _{first}	K factor	c3
	[t*h/N*ha]		[-]
forest	0.0105	0.0135	0.78
- ,, -	0.0886	0.1100	0.81
grass	0.0115	0.0236	0.49
	0.0660	0.2000	0.33
	0.1620	0.3450	0.47

At the moment, not enough data are available to calculate SLRs for the multitude of tropical cropping systems. Nevertheless, soil loss can be estimated by the available data. In most experiments published in literature, soil loss was measured on a cropped plot and compared to soil loss on an adjacent control plot. Such data supply soil loss values for single cropping seasons or years without considering different crop stages. C factors which have a high variability due to a low number of repetitions can be calculated from such data. However, some crops have been tested in several experiments and by comparing and averaging the results some reasonable trends can be observed.

Such annual C factors from different locations include an unknown, site specific variation caused by the erosivity distribution which can not be accounted for. By using them in different sites, the same soil loss will be predicted irrespective of the site specific erosivity distribution.

To estimate the error caused by ignoring the erosivity distribution. C factors were calculated for a mixed cropping system measured in Cameroon by using erosivity distribution curves from sites with an annual erosivity between 750 and 3231 N/h and mono- and bimodal rain distribution. The maximum difference was small (16%) (Table 74-5) (Petri, 1992). Furthermore, the limited ecological range of most crops will also contribute to keep the difference within certain limits because very large differences in climate are generally also accompanied by a change in crops.

The system rain – canopy cover – soil loss can be regarded as selfstabilizing within certain limits. More rain after seeding or germination will enable faster and more growth provided that water is a limiting growth factor as it is in many regions at the onset of the rain. Such an auto-regulation also favours similar annual C factors despite site specific differences in temporal rain distribution. However, some crops can be found in very contrasting climatic zones. Groundnut and maize, e.g., are as well planted in the rainforest as in much drier environments. In this case it is safer to choose a C factor which was measured in a climate comparable to the site for which calculations shall be carried out.

Table 74-5: Annual C factor calculated for a mixed cropping system with the erosivity distribution of sites from different climatic zones (Petri, 1992)

site	mean annual rain	mean annual erosivity	С	factor	ecological zone
	[mm]	[N/h]	[-]	[% of mean]	
Douala	3970	3231	0.23	92	humid rainforest
Bamenda	2470	1395	0.26	104	humid highland
Bafia	1470	818	0.29	116	humid savannah
Yaoundé	1610	942	0.23	92	savannah/ forest transition
Batouri	1560	750	0.25	100	- ,, -
mean				0.25	100

Determination of the C factor

As previously described, C factors can be derived from available experimental data or be calculated by using subfactors.

I. Derivation of C factors from experimental data

Choose a table from Tables 74-8 to 74-18 according to the main crop and look for a similar management system as your own in the descriptions:

table no.	title	page
Table 74-8	C factors for forest, bush and grass veg-	
	etation (fallows, pasture) and subfactors for	
	residual effects	-133 -
Table 74-9	Example of alternative method for deter-	
	mination of C factor for the 1st year for grass,	
	cover crops and bush fallows	- 134 -
Table 74-10	C factors for banana	- 134 -
Table 74-11	C factors for pineapple	- 136 -
Table 74-12	C factors for cassava	- 137 -
Table 74-13	C factors for miscellaneous perennial crops	- 138 -
Table 74-14	C factors for groundnut	- 139 -
Table 74-15	C factors for maize	- 140 -
Table 74-16	C factors for millet and sorghum	- 141 -
Table 74-17	C factors for upland rice	- 143 -
Table 74-18	C factors for miscellaneous crops	- 144 -

Tables 74-8 to 74-18 contain average values derived from the detailed data in Annex 3.4 (= source refers to the lines in the Annex tables). The detailed C factors given in Annex 3.4 are not advised for unexperienced users. They were included for people who seek more information and in order to allow control and improvement of the data-base and the derived values in the user section²⁶. If you doubt about what to choose, take an average value.

With some routine, corrections for differences between described and own system can be applied. If, for example, your crop is especially well developed, a smaller C factor should be chosen within the range given as 'extremes'.

If a notill option is not included in one of the management systems, the C factor for the clean tilled variant can be taken and multiplied by one of the values in Table 74-6 which were derived from data in Table 34-8Annex:

²⁶ If you have literature available on the subject which is not included in the tables of Annex 4.4, the authors would be grateful for indications or a copy.

no.	notill system	C factor		literature (lines in Table 34-8Annex	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	mean	extremes		
1	without residues	0.65	0.45 to 0.81	mean of no. 1 to 7	
2	with residues	0.22	0.1 to 0.41	mean of no. 8 to 12	

Table 74-6: Average C factor for notill

If a certain mulch cover is maintained in your system, you can choose the C factor for the system without mulch and correct it by multiplying with a mulch factor (c2) from Table 74-7.

If two crops are planted during the year, two C factors must be chosen from the tables. In order to arrive at an annual C factor, the two C factors and the periods between the two cropping seasons must be weighted according to the crosivity which they receive.

Example:

A rotation consists of groundnut which is planted during the first rainy season and is followed by plowed maize. In the dry spell between the two cropping seasons, the field is left to the natural weeds. The C factors for each crop and period are multiplied by the relative amount of erosivity which falls during the respective period i.e. 30% of the annual erosivity falls during groundnut cultivation, the dry season receives 10%, maize 50% and the 2nd dry season another 10% of the annual erosivity. The sum of all products gives the annual C factor of 0.35:

period	C factor for single periods	relative erosivity	product
groundnut	0.39	0.3	0.117
dry season	0.19	0.1	0.019
maize	0.39	0.5	0.195
dry season	0.19	0.1	0.019
total		1.0	0.350

In order to judge a system, not only the cultivation period is regarded but the whole rotation which includes the fallow period. If in the above example the groundnut-maize year is followed by two years of grass fallow, the annual C factor is (0.35 + 0.19 (Table 74-9a, line 2) + 0.004 (Table 74-9a, line 3))/3 = 0.18.

II. Derivation of C factors by subfactors

The C factor can be calculated from subfactors by:

 $C = c1 * c2 * c3 \quad (-) \tag{46}$

with subfactor:	c1	influence of canopy cover
	c2	influence of mulch cover
	c3	residual influence of former vegetation

In order to derive c1 to c3, the following information is needed:

- 1. the canopy cover curve and the canopy height to calculate subfactor c1 (equation No. (42))
- 2. the mulch cover curve for subfactor c2 (equation No. (45))
- 3. the residual influence of the former vegetation
- 4. the relative distribution of the annual erosivity

The influence of notill can additionally be considered by multiplying with the notill subfactors in Table 74-6.

▷ 1. The canopy curve is either determined by measuring canopy coverage for the system (methods in Annex 3.2) or by using the typical growth curves given in Annex 3.3. However, it should be kept in mind that the variability included in the mean growth curves due to growing conditions and cultivars may be appreciable. Calculations and measurements can be carried out for crop stage periods (Table 74-1) or with a finer resolution i.e. 10 day or weekly intervals. The effective canopy coverage is calculated by equation No. 44. The canopy height can be measured or estimated from experience and is used to calculate the effective height by equation No. (43). With the effective height and the effective cover subfactor c1 can be read from Figure 74-3.

▷ 2. Mulch coverage is determined from the mulch cover curve which shows mulch cover in the cropping system during the year. Subfactor c2 can be directly read from Table 74-7.

mulch coverage [%]	subfactor c2 [-]	mulch coverage [%]	subfactor c2 [-]
0	1.00	50	0.28
2	1.00	55	0.25
5	0.90	60	0.21
10	0.77	65	0.18
15	0.68	70	0.15
20	0.60	75	0.13
25	0.54	80	0.10
30	0.47	85	0.08
35	042	90	0.06
40	0.36	95	0.05
45	0.32	100	0.03
			1

Table 74-7: Subfactor c2 for the effect of mulch cover (based on Wischmeier & Smith, 1978)

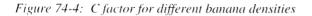
- \triangleright 3. Use c3 from Table 74-9a.
- \triangleright 4. Calculate the mean relative erosivity distribution from as many years as available (as in Table 74-3). If no erosivity data are available, use the relative rainfall distribution. Generally, mean curves are calculated by averaging weekly or 10 day intervals for as many years as possible.

	mean	extremes	(lines in Table 34-1Annex)
dense forest	0.0002	ŝ	
grass or bush vegetation 1st year or			
poorly developed*1	0.19	0.09 to 0.29	mean of 3, 5, 16. 22
well established grass or bush vegetation	0.004	0.002 to 0.007	mean of 2, 15, 17, 21, 23, 24
time between cropping cycles with			
residues of former crop left (maize residues.			
oundnut, mungbean)	0.05	0.01 to 0.09	mean of 6 and 7
	0.27	0.25 to 0.28	mean of 8 and 9
sidual effects			
t year after clearing of bush fallow	0.8	0.78 to 0.81	=
d waar after slearing of	0.0		12
iu year aner ereaning of a	70	0 33 to 0.49	13
t year after clearing of grass tarlow			-
2nd year after clearing of	0.7	,	+
			_
	time between cropping cycles with residues of former crop left (maize residues. groundnut, mungbean) groundnut, mungbean) residual effects 1st year after clearing of bush fallow 2nd year after clearing of 1st year after clearing of	residues.	residues. 0.05 0.27 w 0.27 w 0.4 0.4

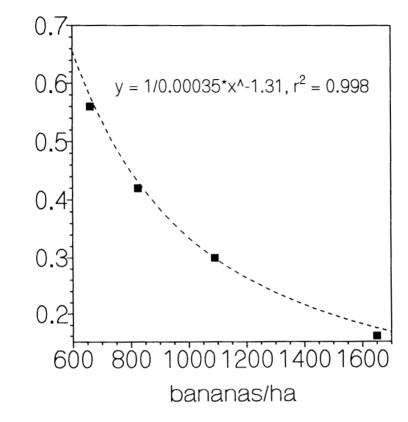
Table 74-8: Average C factors for forest, bush and grass vegetation (fallows, pasture) and subfactors for their residual effects

be determined for coverages (0.10% (= 0.89), 10-20% (= 0.69), 20-40% (0.48) and 40-60% (= 0.29) cover. A SLR of (0.004 (line 3)) can be used for >60\% cover and the following years. These mean SLR's are weighted for the amount of 1 The C factor for the 1st year can alternatively be determined by measuring the time until 10%, 20%, 40% and 60% canopy cover and the amount of erosivity for the same periods of time. From the Table 74-7 the mean soil loss ratio can canopy cover and the amount of erosivity for the same periods of time. erosivity in the same periods of time relative to the annual erosivity. An example is shown in Table 74-9b

cover/period	duration during period	erosivity	SLR	weighted SL (SLR*relative erosivity)
[%]	[d]	[N/h] / [-]	[-]	[-]
tillage/seedbed	0		0	
10	12	150/0.103	0.89	0.092
20	6	120/0.083	0.69	0.057
40	15	140/0.097	0.48	0.047
60	18	220/0.152	0.29	0.044
>60	314	820 / 0.566	0.004	0.00 23
sum	365	1450 / 1		0.24


Table 74-9:	Example of an alternative method for the determination of a
	C factor for the 1st year of grass, cover crops and bush fallows

The C factor for the 1st year is the sum of the weighted SLR's (0.24).


Table 74-10:	Averaged	C factors	for banana
--------------	----------	-----------	------------

no.	description	Cf	actor	literature
		mean	extremes	(lines in Table
				34-2Annex)
1	leaves placed around trunks and on contour; spacing 5 x 3 m on contour	0.56	0.14 to 1.08	l
	Alternatively for a young plantation			
	1st year)			
2	as above but spacing 2 x 3 m	0.16	0.04 to 0.3	2
3	as above but spacing 3 x 3 m	0.30	0.08 to 0.58	3
4	as above but spacing 4 x 3 m	0.42	0.1 to 0.83	4
5	with complete mulch cover	0.00061	0.0003 to 0.0009	mean of 5 & 6

For other spacings/ densities between 5 x 3 m (= 660 plants/ha) and 2 x 3 m (= 1650 plants/ha) C can be taken from Figure 74-4.

C factor

	pineapple	description	Cta	C factor	literature
			mean	extremes	(lines in
					Table 34-3Annex)
-		planted along slope: density 45000	0.73	I	 *
		plants/ha: 1st year (9% slope)			
	subfactors				
1		for every 15 000 plants added to the	0.75	0.71 to 0.78	calculated from 1 to
ŝ					
		45000 plants/ha above multiply 0.73 by			
Э	intercrop	intercropping with upright growing plant	0.84	0.79 to 0.93	calculated from 1 to 3
	-	(comparable to cowpea)			and 10 to 12*2
4	1 = 1	intercropping with creeping plant	0.5	0.44 to 0.53	calculated from 1 to 3
		(comparable to melon)			and 11 to 13

: (0.6)
% slope
5 uo .
for effect of contour on 9 %
to
r effec
for
ed from no. 1; corrected for e
÷
no.
from
calculate
*

*2 (no.4/no.1 + no. 5/no. 2 + no. 6/no. 3)/3

Example: pineapple planted along slope at a density of 75 000 plants/ha intercropped with ground nut: (no.1 * no.2 * no.2); C = 0.73 * 0.75 * $0.75 \approx 0.84 = 0.35$. If the plants are planted on a 9% slope on contour, the C factor has to be multiplied additionally by 0.6 (= 0.21)

Table 74-11: Average C factors for pineapple

Imeanextremes(line in Table 34)1monocropplanted on level ground*10.360.12 to 0.56mean of no. 1-52intercropon level ground: intercropped0.180.02 to 0.59mean of no. 16 to2with maize. rice. cowpea. soya.0.180.02 to 0.59mean of no. 16 to4with maize. rice. cowpea. soya.0.180.02 to 0.59mean of no. 16 to5with maize. rice. cowpea. soya.0.180.02 to 0.59mean of no. 16 to6with maize. rice. cowpea. soya.0.180.02 to 0.50no. 267subfactorfor intercropping with maize0.630.57 to 0.69no. 27	no.	no. cassava	description	C	C factor	literature
planted on level ground*1 0.36 0.12 to 0.56 on level ground: intercropped 0.18 0.02 to 0.59 with maize. rice. cowpea, soya, phaseolus or cocoyam 0.63 0.57 to 0.69				mean	extremes	(line in Table 34-4Annex)
on level ground: intercropped 0.18 0.02 to 0.59 with maize. rice. cowpea, soya, phaseolus or cocoyam r for intercropping with maize 0.63 0.57 to 0.69	_	monocrop	planted on level ground*1	0.36	0.12 to 0.56	mean of no. 1–5
with maize, rice. cowpea, soya, phaseolus or cocoyam for intercropping with maize 0.63	10	intercrop	on level ground; intercropped	0.18	0.02 to 0.59	mean of no. 16 to 18 and 20
phaseolus or cocoyam for intercropping with maize 0.63			with maize, rice, cowpea, soya,			to 26
for intercropping with maize 0.63			phaseolus or cocoyam			
0.63		subfactor				
	ю		for intercropping with maize	0.63	0.57 to 0.69	no. 27

Table 74-12: Averaged	C factors for cassava
-----------------------	-----------------------

*1 level ground = no mounds or ridges were formed

no.	crop	description	C factor	measurement	country	location	literature
				period		4/	
-			mean extremes	8	[a]		
_	coffee . oilpalm.	with well developed cover	0.002 0.0007	4	Ivory Coast	Ivory Coast Adiopodoumé	Roose
	cocoa	crop	40.0036	۲۵- ۲۵-			(1975, p. 30/31)
CI	coffee. oilpalm.	coffee. oilpalm. with badly developed cover		-		:	
-	cocoa	crop					
m	coffec		0.02				Lewis (1986 in:
				_			Young,
							1989, p. 33)
4	oilpalm	mature stand: 9% slope	0.03	3	-		Maene & Chong
							(1979
							in: Sulaiman
							et al., 1983)
Ś	sugarcane		0.39	1	Malaysia-		Sulaiman et al. 1983

Table 74-13: C factors for miscellaneous perennial crops

no.	groundnut	description	Cf	C factor	literature (lines in
			mean	extremes	ladie 34-3Annex)
_	monocrop	on level ground; on contour	0.34	0.21 to 0.59	mean of no. 1-8
C 1	intercrop	with cowpea or pigeon pea	0.53*1	0.50 to 0.57	mean of no. 10 and 11
			_		

Table 74-14: Averaged C factors for groundnut The higher C factor for intercropped groundnut does not seem very reasonable. As long as there is no further evidence, it is proposed to use the value for monocropped groundnut also for the intercropped system ~

				C lactor	Table 34 6 Amer)
			mean	extremes	
1	plow	without residues: along slope	0.39	0.16 to 0.82	no. 1–11
- -		with maize residues surficially incorporated	0.06	0.026 to 0.084	no. 13 and 14
~		with cowpea residues surficially incorporated;	0.18		no. 15 to 16
1		can also be used for residues of groundnut, soya			
t		and crops with similar growth and biomass			
4		with mulch	0.004	0.0029 to	no. 35 and 36
+				0.004	
s.		intercropped with Lotus corniculatus. Trifolium	0.35	0.29 to 0.4	no. 17 and 19
1		hortum or beans			
9	notill	without residues	0.11	0.044 to 0.24	no. 20 to 26
1		with residues	0.02	0.001 to 0.041	no. 27–32
∞	reduced tillage	plowing without harrowing	0.03	0.02 to 0.04	no. 33 and 34
6	ridge	contour ridge. 3% slope	0.054	1	no. 39
2) : 	contour ridge, 8% slope	0.026		no. 40
=	11 tied-ridge/notill	25 cm high contour ridges with 1% lateral slope:	0.011	0.011 0.004 to 0.018	no. 42 and 43
		ties at intervals of 1.5 m and app. 15 cm high			

Table 74-15: Averaged C factors for maize

mulch millet			1	CIACUL	measure-	measure- country	location	nterature	_
					ment				
					period				
2 – mulc		-	mean	extremes	[a]				
	at								
		accord ing to yield level		0.4 to 0.9	ļ	-		Roose (1975. p. 40)	r
	ch	tractor-plowing and hand-	0.052	0.055 to 0.049	C 1	Ghana	Nyankpala	Ghana Nyankpala Bonsu (1980, p. 250/51)	
		rotovator on 2% slope;							
		Pennisetum glaucum							
		planted at 60 x 25 cm							
		plus 4 t/ha dry millet straw;							
		42-16-48 kg/ha NPK							
3 inter	intercrop	tillage and fertilizer as	0.076	0.055 to 0.098	0	:	 = 	=	
		above; groundnut planted							
		at 60 x 20 cm and		<u>.</u>			_		
		intercropped with millet							
		without straw							
4 inter	intercrop	traditionally intercropped							
		with sorghum and							
		bambara nut	0.137	0.105 to 0.169	~	=	:	-	
5 ridge	e	millet mono-crop (spacing,							
		tillage and fertilizer as							
		above) on ridges across							
		slope	0.079	0.055 to 0.1	сı	 : 		=	
6 redu	iced tillage	reduced tillage millet mono-crop, tractor							
(mir	(minimumtill)	-plowed, no harrowing	0.113	0.104 to 0.123	CI	:	-		

Table 74-16: C factors for millet and sorghum

	no. crop treatment	description	Cf	C factor	measure-	measure- country location	location	literature
					ment			
					period			
			mean	extremes	[a]			
	sorghum							
1	plow		0.242		I	Indonesia	and the second se	Abdurachman et al.
								(1984)
×	plow	according to yield level		0.4 to 0.9				Roose (1975, p. 40)
6	contour	planted on contour on 4	0.27		_	Indonesia		Keersebilck (1990, p.
		out of 8 different						570)
		Indonesian soil types						
2			0.4					Lewis (1986 in: Young. 1989, p. 33)

Table 74-16: continue

wold	description	C factor	measure-	measure- country	location	literature
wold			ment			
wold			period			
wold		mean extremes	S [a]			
	inten sive cropping	— 0.1 to 0.2	2			Roose (1975, p. 40)
	planted on contour on	0.58 —	-	Indonesia		Keersebilck (1990, p.
						570)
	4 out of 8 different					
	Indonesian soil types					
	0	0.561 —		-		Abdurachman et al.
						(1984)
		0.135 —	9	Brazil	Brasilia	Leprun et al. (1986, p.
	slope:					228)
= = =	with 4 t/ha straw mulch 0	0.096		Indonesia	1	Abdurachman et al.
						(1984)
	with residue mulch in 0	0.347 —	ļ	-		=
= =	a rotation of rice - maize					
2	as above but without 0	0.496 —		-	ļ	=
2	e mulch					
sorghum	in a rotation of rice – 0	0.345 —		:		-
	m					
9 — " — in a rotatio	on of rice –	0.417 —		:		
soya						

Table 74-17: C factors for upland rice

no.	сгор	description	C mean	factor extremes	literature lines in Table 34-7Annex
1	Bambara nut	plowed; 3.5% slope; spacing	<u>.</u>		04 // Kilika
•	Dumoura nat	$30 \times 30 \text{ cm}$	0.43		no. 1
2	beans	data from mung bean, red	0.13	0.47 to 0.16	no. 2 to 6
~	ocums	bean and jack bean	0.27	0.17 (0 0.10	10.200
3	cabbage	planted as monocrop			
2,	cuobage	on contour on 4 out of 8			
		different Indonesian soil types	0.6		no. 7
4	chili	unrerent indonesian son types	0.33		no. 8
5	cotton	planted along slope	0.29		no. 9
6	_ "	2nd cycle	0.29		no. 11
7	cowpea	plowed; without residues	0.24	0.21 to 0.27	no. 12 and 13
8	"	plus residues of former maize;	0.06	0.21 to 0.27	no. 14 to 17
0		planted along slope	0.00	0.002 10 0.28	10.14.017
9	''	notill, plus residues of former	0.005	0.0004 to 0.02	no. 18 to 20
		maize, planted along slope	0.000	0.000110.0.02	10.101020
10	Irish potatoe	—	0.22		no. 21
	lemon grass		0.434		no. 22
12		without cover crop	2.1		no. 23
13	soya	••	0.26	0.1 to 0.4	no. 24 to 27
14		notill without residues	0.103		no. 28
15	sweet potatoes		0.23		no. 29
	tobacco	2nd cycle	0.5		no. 30 and 31
17	wheat-soya	rotation on 12% slope, wheat	0.113		no. 32
	(residues burned; soya residues			
		incorporated			
18	''	as above but all residues	0.05		no. 33
		surficially incorporated			
19	''	rotation as above but with notil	0.04		no. 34
20	wheat-maize	as above, conventionally tilled,	0.1		no. 35
		residues incorporated			
21	·····	as above but notill	0.014		no. 36
		(residues maintained)			[
22	yam	on heaps	0.23	0.16 to 0.8	no. 38
23	- "	on heaps; intercropped; with	0.07	0.04 to 0.09	no. 39
		residue mulch			

Table 74-18: Averaged C factors for miscellaneous crops

7.5 The effect of protective methods – Support practice factor (P)

Protection measures must be adjusted to the possibilities and resources of each farmer. For nearly each individual situation a set of suitable physical and biological methods can assure sufficient soil protection.

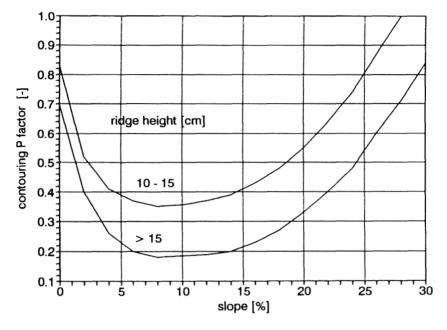
7.5.1 Contouring, contour-ridging, tied-ridging

Generally speaking contouring means that all tillage operations and planting are carried out across the slope. Contour tillage and planting with mechanical tools leaves a roughness of the soil surface that is oriented across the slope. This may be considered as micro-ridges on contour. Such a formed surface redirects and retards the surface runoff. The efficiency depends on the degree of roughness (ridge height), the side slope of the tillage marks and the gradient of the overall slope. There is no clear limit between contouring and contour-ridges or bunds. The latter could be regarded as extreme roughness. Contouring in its original sense occurs under mechanized tillage with crops planted in rows. In handtilled systems only planting can strictly be achieved on contour. Tillage with the handhoe is generally moving up-slope. The blade of the hoe is placed on contour but no continuous roughness is created. There is no information whether the roughness left by the handhoe marks can be compared to contour tillage.

Contouring reaches its maximum protectiveness on slopes between 3 and 8% (Table 751-1). It is less efficient on slopes below 3% where runoff velocity is slow and a protective water mulch forms. On slopes above 8%, the protectiveness declines as the water storage capacity of the ridges becomes smaller with increasing gradient. For slopes > 25%, no protection is reached. P factors which were calculated from recent soil loss studies (Table 41-1Annex) support the values in Table 751-1:

slope [%]	P factor for contouring	maximum slope length [m]*1
1 - 2	0.6	122
3-8	0.5	91
9-12	0.6	61
13 - 16	0.7	24
17-20	0.8	18
21 - 25	0.9	15
>25	1.0	13

Table 751-1: P factor for contouring (Wischmeier & Smith, 1978)


*1 The maximum slope length may be increased by 25% if residue cover after planting regularly exceeds 50%

A P factor of 1 for slopes > 25% was based on the assumption that a typical 15 cm high ridge in mechanized systems retains no more water on a slope of 25% (Foster et al., 1992). If the storage capacity of the ridges is large enough to prevent overflow, maximum slope lengths need not to be applied. As the effectiveness of contour ridges depends on their storage capacity, it must also depend on storm size. In locations with frequent large storms, contouring is less effective than in locations with smaller storms. Therefore, the 10 year storm volume is chosen for ridge design purposes (Foster et al., 1992). If the furrows can only carry the maximum 2 year storm, length limits are applicable (Wischmeier & Smith, 1978).

The procedure to estimate the influence of ridges applied by the USLE gives a rough estimate and does not allow to distinguish between different ridge heights. Ridges, however, play an important role in tropical agro-systems. A more refined estimation is possible by using the P factors in Figure 751-1 used in the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1992). The curves were calculated on the basis of a 10 year storm of 86 to 190 mm, hydrologic soil group C^{27} and clean tillage for row

²⁷ hydrologic soil group C includes soils with low infiltration rates when wet, mostly with impending layers or moderatly fine texture (USDA, 1972; SCS National Engineering Handbook)

Figure 751-1: P factors for different ridge heights for areas with 10 year storms between 86 and 190 mm and hydrologic soil group C (Foster et al., 1992)

crops with no cover and minimum roughness (cover-management condition 6). In West Africa such 10 year storms are found approximately in the belt between 16° northern latitude (north Senegal, north Burkina Faso) and the coast line (Figure 751-2). For other areas no information on the 10 year storm was found.

For areas with a lower 10 year storm volume (e.g. north of 16° latitude) the ridge efficiency will be underestimated by Figure 751-1, whereas for areas with higher 10 year storm volume an overestimation is possible. Regarding the soils, hydrologic soil group C may be applied to the Aridisols, Alfisols, Inceptisols and Vertisols of the semi-humid to semi-arid/ arid area. For the Ultisols and Oxisols of the humid to semi-humid areas the efficiency is underestimated by hydrologic soil group C.

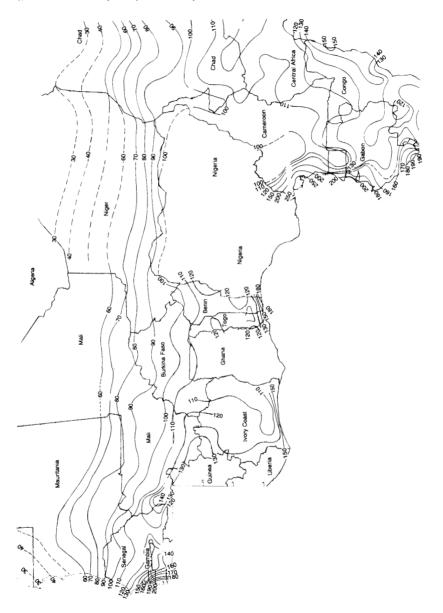


Figure 751-2: Isohyetes for the 10 year storm volume (CIEH, 1985)

Contouring and contour ridges are mostly not exactly on contour. In practice, they have a side slope either accidentally or in order to evacuate excess water. For side slopes < 0.5%, all soil is deposited in the furrows (cf. Chapter 4.3). For steeper side slopes the efficiency of contour ridging is reduced. P factors corrected for side slope effects (Table 751-2) were calculated by (Foster et al., 1992):

$$P_{g} = P_{o} + (1 - P_{o}) * (s_{f}/s_{l})^{0.5}$$
(47)

with	P_g	P factor for off-grade contouring
	Po	P factor for on-grade contouring
	s_{f}	grade along the furrows (sine of slope angle)
	s_1	steepness of the land (sine of slope angle)

Measured values for ridges are given in Table 41-2Annex, line 1 and 2. The table also indicates the disastrous effect of up- and down-slope ridges (P = 0.9 to 4.4). For practical purposes a P factor of 2 can be used for this practice.

slope [%]	uncorrected P factor			corre	cted P fact	or	
				side slop	e of furrow	's [%]	
		0.5	1.0	1.5	2.0	3.0	5.0
4	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.94	0.95	0.96	0.97	0.99	1.00
	0.8	0.87	0.90	0.93	0.95	0.98	1.00
	0.7	0.81	0.86	0.89	0.92	0.97	1.00
	0.6	0.75	0.81	0.85	0.89	0.96	1.00
	0.5	0.68	0.76	0.82	0.87	0.95	1.00
	0.4	0.62	0.71	0.78	0.84	0.94	1.00
	0.3	0.56	0.66	0.74	0.81	0.93	1.00
	0.2	0.49	0.62	0.71	0.79	0.92	1.00
	0.1	0.43	0.57	0.67	0.76	0.91	1.00
8	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.93	0.94	0.94	0.95	0.96	0.98
	0.8	0.85	0.87	0.89	0.90	0.92	0.96
	0.7	0.78	0.81	0.83	0.85	0.88	0.94
	0.6	0.70	0.74	0.77	0.80	0.85	0.92
	0.5	0.63	0.68	0.72	0.75	0.81	0.90
	0.4	0.55	0.61	0.66	0.70	0.77	0.87
	0.3	0.48	0.55	0.60	0.65	0.73	0.85
	0.2	0.40	0.48	0.55	0.60	0.69	0.83
	0.1	0.33	0.42	0.49	0.55	0.65	0.81
12	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.92	0.93	0.94	0.94	0.95	0.96
	0.8	0.84	0.86	0.87	0.88	0.90	0.93
	0.7	0.76	0.79	0.81	0.82	0.85	0.89
	0.6	0.68	0.72	0.74	0.76	0.80	0.86
	0.5	0.60	0.64	0.68	0.71	0.75	0.82
	0.4	0.52	0.57	0.61	0.65	0.70	0.79
	0.3	0.44	0.50	0.55	0.59	0.65	0.75
	0.2	0.36	0.43	0.48	0.53	0.60	0.72
	0.1	0.28	0.36	0.42	0.47	0.55	0.68
16	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.92	0.93	0.93	0.94	0.94	0.96
	0.8	0.84	0.85	0.86	0.87	0.89	0.91
	0.7	0.75	0.78	0.79	0.81	0.83	0.87
	0.6	0.67	0.70	0.72	0.74	0.77	0.83
	0.5	0.59	0.63	0.65	0.68	0.72	0.78

Table 751-2: Correction of P factors for ridges with side slopes

Table 751-2, continue

slope [%]	uncorrected P factor			correc	ted P facto)r	
				side slope	of furrows	s [%]	
	-	0.5	1.0	1.5	2.0	3.0	5.0
16	0.4	0.51	0.55	0.58	0.61	0.66	0.74
	0.3	0.42	0.48	0.52	0.55	0.61	0.69
	0.2	0.34	0.40	0.45	0.49	0.55	0.65
	0.1	0.26	0.33	0.38	0.42	0.49	0.61
20	1	1.00	1.00	1.00	$1.0\bar{0}$	1.00	1.00
	0.9	0.92	0.92	0.93	0.93	0.94	0.95
	0.8	0.83	0.85	0.86	0.86	0.88	0.90
	0.7	0.75	0.77	0.78	0.80	0.82	0.85
	0.6	0.66	0.69	0.71	0.73	0.76	0.80
	0.5	0.58	0.61	0.64	0.66	0.70	0.75
	0.4	0.50	0.54	0.57	0.59	0.63	0.70
	0.3	0.41	0.46	0.49	0.52	0.57	0.65
	0.2	0.33	0.38	0.42	0.46	0.51	0.60
	0.1	0.24	0.30	0.35	0.39	0.45	0.55
24	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.91	0.92	0.93	0.93	0.94	0.95
	0.8	0.83	0.84	0.85	0.86	0.87	0.89
	0.7	0.74	0.76	0.78	0.79	0.81	0.84
	0.6	0.66	0.68	0.70	0.72	0.74	0.79
	0.5	0.57	0.60	0.63	0.65	0.68	0.73
	0.4	0.49	0.52	0.55	0.58	0.62	0.68
	0.3	0.40	0.44	0.48	0.51	0.55	0.62
	0.2	0.32	0.37	0.40	0.43	0.49	0.57
	0.1	0.23	0.29	0.33	0.36	0.42	0.52
28	1	1.00	1.00	1.00	1.00	1.00	1.00
	0.9	0.91	0.92	0.92	0.93	0.93	0.94
	0.8	0.83	0.84	0.85	0.85	0.87	0.89
)	0.7	0.74	0.76	0.77	0.78	0.80	0.83
	0.6	0.65	0.68	0.69	0.71	0.73	0.77
	0.5	0.57	0.60	0.62	0.64	0.67	0.72
1	0.4	0.48	0.52	0.54	0.56	0.60	0.66
1	0.3	0.40	0.43	0.47	0.49	0.53	0.60
	0.2	0.31	0.35	0.39	0.42	0.47	0.54
	0.1	0.22	0.27	0.31	0.35	0.40	0.49

Determination of the P factor for contouring and contour ridging

Contouring and contour-ridging

a. For simple tillage and planting of row crops on the contour, use P factors in Table 751-1 according to the slope. If contouring and ridges were established with side slopes, enter Table 751-2 for correction.

Example:

For a contoured slope of 14% with a side slope of 3% a P factor of 0.7 was chosen from Table 751-1. The side slope effect is considered by entering Table 751-2 for a 12% and a 16% slope (P corrected = 0.85 and 0.83, respectively) and interpolating the two values to a 14% slope (P corrected = 0.84).

- b. For ridges with a height of more than 10 cm, choose a P factor according to slope and minimum ridge height from Figure 751-1. Correct it for the effects of an eventual side slope as explained in a..
- c. If ridges do not persist during the entire year but are mounted, for example, during the growing period of a crop and levelled during harvest, the P factor can not be fully credited. In this case only the soil loss ratios of those crop stages are multiplied with the P factor for ridges for which the ridges are intact. For the crop stage periods without ridges P equals 1.

Example:

Maize is planted on level ground on a 10% slope. When canopy cover reaches 10%, 15 cm high ridges are mounted with a 1% side slope. The term C x P factor is calculated like in Table 751-3.

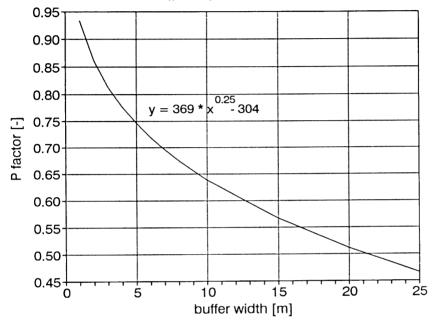
1	2	3	4	5	6
crop stage	erosivity	soil loss	P factor	corrected	C x P
	ratio	ratio		P factor	column 2 x 3 x 5
SB - 10	0.02	0.56	1.00	1.00	0.011
10-50	0.07	0.51	0.36	0.57	0.020
50-75	0.06	0.32	0.36	0.57	0.011
75 – H	0.51	0.05	0.36	0.57	0.015
H – SB	0.36	0.05	1.00	1.00	0.018
SB – SB	1.00			Total:	0.075

Table 751-3: Calculation of the C x P factor for temporary established ridges

The erosivity ratios were taken from Figure 74-1 from the 'north' curve assuming that crop stage SB – 10 started on the 130 day. The duration of the crop stage periods and the soil loss ratios were taken from Table 74-2 (column 2 and 5). A P factor of 0.36 corresponds to 15 cm ridges on a 10% slope (Figure 751-1). The corrected P factor is interpolated from Table 751-2 ((0.59 + 0.54)/2 = 0.57). The resulting C x P factor is 0.075 which compares to C x P = 0.063 if the ridges would be credited for during the entire cropping cycle.

Tied contour ridges

Values in literature for soil loss with tied contour ridges range between 0.21 and 0.035 on slopes between 4.5 and 7% (Table 41-2Annex). Ties between the ridges have no effect if the ridges are perfectly on contour. If the ridges have a side-slope, ties will stop or reduce the sideways evacuation of runoff. A reduction of the ridge efficiency due to side slope will therefore be much less. For practical purposes it is proposed to choose a P factor as for contour ridging from Figure 751-1 and to dismiss the correction for the side slope.


7.5.2 Bufferstrips

Bufferstrips are < 1 to several m large strips within fields mostly composed of quick growing species or natural vegetation. They are laid out on contour in order to decrease runoff velocity thereby causing deposition of suspended sediment. The efficiency of bufferstrips depends on the quality of the strip (strip widths, vegetation density), its age and its position on the slope. The runoff which arrives at the upper bufferstrip end has a certain transport capacity and sediment load. Runoff velocity and transport capacity are reduced in the bufferstrip by the higher hydraulic roughness and friction exerted by the vegetation. Additionally, part of the runoff will infiltrate within the strip which has generally a higher infiltration rate than the adjacent cropped soil. If the transport capacity becomes less than the sediment load, soil is deposited in the bufferstrip. However, if runoff leaves the strip on the lower end, it may regain speed and pick up new sediment from the cultivated strip underneath. Thus, the most favourable case is, if no runoff leaves the strip.

Planted bufferstrips generally do not reach their full protection efficiency during the first rainy season or the first year while the plants' root and canopy system is still establishing. P factors for the second year are, therefore, often lower than for the first year. There is also some evidence, that the efficiency of bufferstrips may decrease with increasing sedimentation in the strip (Barfield & Albrecht, 1982). This will depend on the growth habit of the strip vegetation (e.g. canopy or twig density close to the ground) and how fast the vegetation can grow up and cope with a heavy sediment load. If large amounts of sediment arrive at the bufferstrip, a small terrace will form within a couple of years.

A special case of bufferstrip are the riparian bufferstrips along rivers which prevent sediment entry. However, they do not prevent soil loss from the slope above. An indication for the effectiveness of riparian bufferstrips with increasing strip width is given in Figure 752-1.

Figure 752-1: P factors for riparian bufferstrips of different widths derivedfrom a 8% slope with an annual sediment load of ca. 1 t/m buffer length (Schauder & Auerswald, 1992)

Determination of P factors for bufferstrips

a. Bufferstrips

- a. Systematic trials for the effect of bufferstrips are still deficient. Some P factors as calculated by the RUSLE are given in Table 752-1.
- b. Further P factors can be taken from the experimentally determined P factors in Table 41-5Annex for comparable situations.

Table 752-1:P factors for bufferstrips as calculated by the RUSLE
(Foster etal., 1992)

percent of slope covered by strip	position of strip*1	P factor	
20% in 2 strips	0.4-0.5 and 0.9-1.0	0.67	
10% in 2 strips	0.35-0.40 and 0.65-0.70	0.71	
10% in 1 strip	0.4-0.5	0.75	

*1 for example 0.4-0.5 means that the strip starts after 40% of the slope length down-slope and ends after half of the slope length

b. Riparian bufferstrips

P factors for riparian bufferstrips can be chosen from Figure 752-1.

7.5.3 Contour bunds and heaps

Results from trials indicate the different efficiency of stone-bunds and earthen bunds. Runoff occurring on the uppermost side of a field picks up velocity and sediment. Arriving at the first bund it is completely stopped by an earthen bund or slowed down by a stone bund. The sediment is deposited in front of the bund. Using earthen bunds, the process is repeated between first and second bund, second and third bund and so on. However, stonebunds, which are permeable, allow a part of the water to pass the bund. This water regains velocity and transport capacity on the lower side of the bund and entrain new sediment in addition to the runoff produced on the lower side itself.

The efficiency of earthen bunds is thus much higher in the first year compared to stone-bunds (Table 41-4Annex). However, the data indicate that in the second year the effect of the two types becomes similar. The stone-bunds become less permeable due to sediment which progressively fills and clogs the inner space of the bunds. The earthen bunds apparently became less efficient due to holes which occur in the bund or to the lowering of the bund by raindrop impact or overtopping. The decreasing efficiency of the earthen bunds also make higher maintenance necessary compared to stone-bunds.

Determination of P factors for contour bunds and heaps

a. Stone-bunds and earthen bunds

The P factors in Table 41-4Annex can be used for first and subsequent years in comparable situations. As a bund can be compared to a ridge a similar slope influence on the efficiency of bunds is assumed. Therefore, it is proposed to multiply the available P factors with the ratio of the P factor for a 15 cm ridge (Figure 751-1) of a given slope to the P factor on a 3% slope (Table 753-1). If maintenance is regularly carried out on earthen bunds each year, the P factor for the first year can also be used for subsequent years.

b. Heaps

Not many data are available for the specific effect of heaps on soil loss. The very variable influence is shown by the data in Table 41-3Annex. The influence of heaps depends on their arrangement on the slope (up and down-slope, on contour, in quintuples), their size and height which depend on slope and top soil depth (cf. Chapter 4.4). The data in Table 41-3Annex should only be used if the influence of mounds is not yet included in the C factor (e.g. for yam in Table 74-18 it is not necessary to use additionally a P factor for heaps).

slope	ratio	slope	ratio
[%]	[-]	[%]	[-]
0	2.12	16	0.70
1	1.67	17	0.76
2	1.21	18	0.82
3	1.00	19	0.91
4	0.79	20	1.00
5	0.70	21	1.11
6	0.61	22	1.21
7	0.58	23	1.33
8	0.55	24	1.45
9	0.55	25	1.64
10	0.56	26	1.82
11	0.57	27	1.98
12	0.58	28	2.15
13	0.59	29	2.27
14	0.61	30	2.55
15	0.65		

 Table 753-1:
 Correction factor for bunds on different slopes

7.5.4 Ditches and terraces

Hillside and drainage ditches (cf. Figure 448-1) decrease soil loss by reducing the erosion effective slope length (L factor). Thus, the down-slope acceleration of runoff and its concentration is controlled. Slope length in the USLE is defined as that part of a slope where no major deposition is occurring.

In the case of drainage ditches, the sediment charged water spills freely into the ditch. The slope length is the distance between the lower side of a ditch to the upper side of the next ditch. For a Fanya Juu type terrace (cf. Figure 448-1), deposition begins in front of the excavated ridge and slope length is calculated from the lower end of the ditch to the area where deposition begins in front of the next terrace.

Terraces not only reduce slope length but also gradient which is considered in the LS factor. For sloping bench terraces (cf. Figure 449-2), the

width of the bench is considered as slope length for soil loss prediction. The soil eroded from the bench reaches the toe drain where it is either deposited or washed off into the waterway and out of the field.

The soil deposited either in front of the Fanya Juu terraces, in the ditches or in the toe drains is not yet lost from the field. It can be regarded as distributed within the field. Excavation of the ditches will partly put it back on to the field. The amount of soil which is actually transported out of the field relative to the amount of soil eroded is called the sediment delivery ratio. It varies with the side-slope of the ditches (Foster & Highfill, 1983) from 0.1 for level ditches to 1 for ditches with a side-slope of 1% (Table 754-1).

terrace grade [%]	sediment delivery ratio
closed outlet*1	0.05*2
0	0.10
0.1	0.13
0.2	0.17
0.4	0.29
0.6	0.49
0.8	0.83
0.9	1.00
> 0.9*3	

Table 754-1:Sediment delivery ratios (SDR) for side-slopes
(Foster & Highfill, 1983)

- *1 including terraces with underground outlets
- *2 from Wischmeier & Smith (1978); all other values from
- SDR = 0.1*e2.64g; g = side slope [%]
- *3 net erosion may occur in the channels depending on flow hydraulics and erodibility of the channels; if channel erosion occurs SDR > 1

Determination of P factors for terraces

Calculate soil loss $A = R^*K^*L^*S^*C^*P$ for each terrace by using slope lengths as explained above. The gradient is either the slope-gradient in the case of hillside ditches or the bench gradient in the case of bench terraces. P may be composed of a contouring factor if tillage and planting are carried out on contour (cf. Chapter 7.5.1) which needs to be multiplied by the sediment delivery ratio from Table 754-1.

Example:

A slope is divided into 10 reverse-sloped terraces 10 m wide and 100 m long with a bench gradient of 5% and a side-slope of 0.4%. The benches are cropped to cassava with maize arranged on contour. Further data (R = 500 N/h; K = 0.15; LS = 0.31 (from Figure 73-1); C = 0.21 (from Table 74-12)). P for contouring is 0.5 (from Table 751-1) and the sediment delivery ratio for a 0.4% side-slope is 0.29 (Table 754-1). Thus soil loss for this situation is A = 500 * 0.15 * 0.31 * 0.21 * 0.5 * 0.29 = 0.71 t/ha. Each terrace has 0.1 ha. All terraces together would thus loose 0.71 t.

7.6 Soil loss tolerance limits

Soil loss tolerance limits define the soil loss rates which are tolerable in order to maintain the soil's diverse functions during a specified time. The effect of soil loss depends strongly on the type of soil. Soil loss always implies a loss of nutrients and structural components (clay, organic matter) which are enriched in the sediment. The soil profile is shortened, rooting depth and water storage capacity decreased. On very deep, homogeneous soils, the damage will be less than on soils with unfavourable layers or solid rock close to the surface. Compared to less weathered soils of the temperate and semi-arid zones, loss of surface soil is more severe on highly weathered soils whose nutrient storage and availability depends largely on the organic matter of the surface soil while the subsoil fertility is low.

The yield decline associated with erosion depends also on the crop. Mbagwu et al. (1984) showed that removal of 5 cm of soil reduced maize yields by 95% on an Ultisol whereas on Alfisols mean yield decline was only 52%. Cowpea yields were only reduced by 63 and 22% on Ultisols and Alfisols, respectively. In own measurements, maize yields on an Ultisol were zero after four years of erosion had stripped off the surface soil. On an Alfisol, however, which had been exposed for 8 years, a poor yield was still possible.

Ideally, the soil loss rate should not exceed the soil formation rate of the parent material. Most reported annual weathering rates for tropical climates are below 500 kg/ha (Table 76-1) which is far below agricultural soil loss rates. The lost productivity is irrecoverable by external inputs. This is even more true for small scale farmers in developing countries which do not have the necessary inputs to mitigate soil damage.

Tolerance values also depend on the intended purpose of soil conservation. In general, the purpose for erosion control will be agricultural production. However, in flood prone areas water retention can be the more important goal whereas for the municipal authorities sediment damages on road ditches, waterways or in the public sewerage system may be decisive.

In order to formulate tolerance limits, a decision about a reasonable conservation time must be taken. This is more a political and social question than a scientific one. Can we tolerate a 50 % yield decline in 50 years. 100 years, – or are we still responsible for the well-being of our ancestors in 500 or 1000 years? An answer to this question must be found in order to calculate a mean, annual tolerable soil loss.

country	climate	parent material	annual weathering rate [kg/ha]	literature
Central	sub-humid	granite	150-400	Owens (1974)
Africa				
Puerto	humid	limestone	15000	Kaye (1959)
Rico				
Kenya	humid		150-300	Dunne et al. (1978)
Kenya	semi-arid	—	< 150	Dunne et al. (1978)
USA	arid		300	Kirkby (1980)

Table 76-1: Rates of soil weathering

Tolerance values. – first developed in the USA, were based on estimates of a surface soil formation of 2.54 cm in 300 to 1000 years (Bennett, 1928). This estimate was later changed to 2.54 cm in 30 years which is about 11 t/ha*a (Pimentel et al., 1976). This was the basis for setting

maximum annual soil loss rates in the USA to 11 t/ha. Thus, setting of this and all subsequent values was more based on expert judgement and practical considerations than on scientific data.

Tolerance values for tropical soils have not yet been formulated on an international level. However, some countries use tolerance values and propositions were made by some authors. A summary of existing values is given in Table 76-2.

applied for	tolerance limit [t/ha*a]	literature
tropical soils	15-25	Chin & Tan (1974)
clayey soils	11	Central African Federation after Hudson (1986)
sandy soils	9	"
sandy soils/Zimbabwe	5	Nyagumbo (1992)
shallow, erodible soils	2-5	Hudson (1986)
shallow highland soils	2.5	Lal (1980)
tropical soils	0.2-2	Lal (1983)
Ethiopia	2	Hurni (1980)

 Table 76-2: Tolerance limits proposed for tropical soils

Annex 1 Rainfall and erosivity

Annex 1.1 Erosivity for single sites

Check if your site is included in Table 11-1Annex. Erosivity was directly calculated for these sites. Also verify if erosivity data are available from the meteorological services or research stations²⁸. If your location is near to one of the sites in Table 11-1Annex and has the same annual rain volume, you may as well use the erosivity given in the table. If the rain volume of your site varies within 10% of a nearby station, you can extrapolate the erosivity value linearly. The error for stations between 400 and 4000 mm in Table 11-1Annex is supposed to be less than 6% (Figure 11-1Annex).

Example for extrapolation: The site in Table 11-1 Annex receives 1440 mm/a of rain with an erosivity of 1249 N/h. Your own site nearby has 1300 mm/a. EI_{so} for your site can be calculated by (1249/1440)*1300 = 1128 N/h.

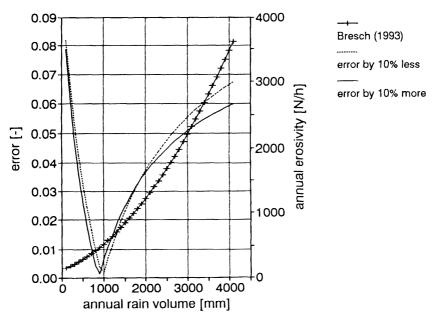


Figure 11-1 Annex: Error as caused by linear extrapolation of erosivity for 10% less/more rain than the stations listed in Table 11-1 Annex

²⁸ If you find any data not yet included in the handbook, please inform the author about location, country, values (with units!!), years of measurements and source.

- " - Sidi Burkina Faso Bob - " - Dori - " - Fada - " - Fada - " - Gao - " - Gao - " - Gao - " - Mog - " - Nian - " - Ouaj - " - Bam - " - Bam - " - Bam - " - Dou - " - Mar - " - Mar - " - Nac		erosivity	measure-	mean	literature
- - Heri - - Mad - - Sidi Burkina Faso Bob - - Bob - - Dori - - Fada - - Fada - - Fada - - Fada - - Gao - - Gao - - Gao - - Mag - - Oua - - Bam Mass - Cameroon Bafi - - Bang - - Dou - - Dou - - Dou - - Dou - - <th></th> <th></th> <th>ment</th> <th>annual</th> <th></th>			ment	annual	
- - Heri - - Mad - - Sidi Burkina Faso Bob - - Bob - - Dori - - Fada - - Gon - - Mog - - Oua - - Bam - - Bam - - Bam - - Ban - - Dou - - Dou - - Dou - - Dou			period	rain	
- - Heri - - Mad - - Sidi Burkina Faso Bob - - Bob - - Dori - - Fada - - Gon - - Mog - - Oua - - Bam - - Bam - - Bam - - Ban - - Dou - - Dou - - Dou - - Dou		[N/h]	[a]	[mm]	
- " - Mad - " - Sidi Burkina Faso Bob - " - Fada - " - Fada - " - Fada - " - Fada - " - Fara - " - Gao - " - Mag - " - Mag - " - Mag - " - Niar - " - Oua - " - Oua - " - Oua - " - Oua - " - Saria Burundi Mas Cameroon Bafi - " - Ban - Ban - " - Ban - Ban - " - Ban - Ban - " - Ban - Ban - " - Ban - Ban - Ban - " - Ban - Ban	ırari	139	2	555	Mazour (1992)
- " - Sidi Burkina Faso Bob - " - Dori - " - Fada - " - Fada - " - Fada - " - Gao - " - Gao - " - Gao - " - Mog - " - Mog - " - Oua - " - Oua - " - Oua - " - Bafi - " - Bam - " - Bang - " - Dou - " - Dou - " - Dou - " - Dou - " - Barn - " - Dou - " - Dou - " - Marc - " - Marc - " - Nacl - " - Nacl <tr td=""> " - - "</tr>	iz	53	2	338	, -
Burkina Faso Bob - " - Dori - " - Fada - " - Fada - " - Fada - " - Gaor - " - Gaor - " - Mog - " - Mog - " - Ouaj - " - Ouaj - " - Ouaj - " - Barn - " - Dou - " - Mara - " - Mara - " - Nacl - " - Nacl <	djoudj	50	2	330	_ " _
- " - Dori - " - Fada - " - Fada - " - Fara - " - Gaor - " - Gom - " - Mog - " - Nian - " - Nian - " - Ouaj - " - Ouaj - " - Ouaj - " - Barr Burundi Masi Cameroon Bafi - " - Bang - " - Bang - " - Bang - " - Dou - " - Dou - " - Dou - " - Dou - " - Mare - " - Mare - " - Mare - " - Naci - " - Ngae - " - Ngae - " - Ngae	Mohamed Cherif	53	2	338	_ " _
- " - Fada - " - Fada - " - Fara - " - Gon. - " - Gon. - " - Mog - " - Nian - " - Ouaj - " - Ouaj - " - Ouaj - " - Bara - "	o-Dioulasso	998	58	1150	Galabert & Millogo (1973)*2
 " – Fara " – Gao " – Gao " – Gon " – Mog " – Nian " – Oua " – Oua " – Oua " – Bara " – Bara " – Bang " – Bang " – Dou " – Dou " – Dou " – Oua " – Mara " – Mara " – Nacl " – Nga 	i	468	47	540	_ '' _
- " - Gaoi - " - Gon. - " - Mog - " - Nian - " - Oua - " - Oua - " - Oual - " - Saria Burundi Masi Cameroon Bafi: - " - Bam - " - Bang - " - Diba - " - Dou: - " - Dou: - " - Mare - " - Mare - " - Mare - " - Nacl	a- N`Gourma	772	48	890	- " -
- " - Gon. - " - Mog - " - Nian - " - Oua; - " - Oua; - " - Oua - " - Saria Burundi Masi Cameroon Bafi: - " - Bang - " - Bang - " - Bang - " - Dou. - " - Dou. - " - Oua; - " -	ıko-Ва	841	6	1083	
- " - Mog - " - Nian - " - Ouaj - " - Ouaj - " - Saria Burundi Masi Cameroon Bafi - " - Bang - " - Bang - " - Bato - " - Dou - " - Dou - " - Ouaj - " - Bang - " - Bato - Bato	ua	1076	53	1240	. – " –
- " - Niar - " - Oua; - " - Oua; - " - Saria Burundi Masi Cameroon Bafi, - " - Bam - " - Bam - " - Bam - " - Bato - " - Dou; - " - Dou; - " - Osct - " - Mare - " - Mare - " - Ngae - " - Ngae - " - Ngae - " - Ngae	isé	599	5	709	Roose (1975)
 - " - Oua; - " - Oua; - " - Saria Burundi Mas Cameroon Bafa - " - Bam - " - Bam - " - Ban; - " - Diba - " - Disc - " - Osci - " - Mar - " - Mar - " - Ngac 	gtedo	656	6	754	Galabert & Millogo (1973)*2
- " - Oual - " - Oual Burundi Mas Cameroon Bafu - " - Bam - " - Bang - " - Bato - " - Diba - " - Disc - " - Osct - " - Garc - " - Mare - " - Mare - " - Nacl - " - Ngac - " - Ngac - " - Ngac	ngoloko	1162	23	1340	_ " _
- " - Saria Burundi Masi Cameroon Bafit - " - Bam - " - Bang - " - Diba - " - Dou - " - Dsch - " - Garc - " - Mar- - " - Mar- - " - Ngac - " - Ngac - " - Ngac - " - Ngac	gadougou	763	21	880	_ " _
Burundi Masi Cameroon Bafi - " - Bam - " - Ban - " - Bato - " - Diba - " - Dou. - " - Doc. - " - Doc. - " - Doc. - " - Doc. - " - Mar - " - Mar - " - Mar - " - Mar - " - Nacl - " - Ngac	higouya	607	49	700	_ " _
Cameroon Bafil - " - Bam - " - Bang - " - Bato - " - Diba - " - Dou. - " - Dou. - " - Doc. - " - Doc. - " - Doc. - " - Doc. - " - Mar - " - Mar - " - Nacl - " - Nga - " - Nga - " - Nga - " - Nga	a (Meteo)	729	30	840	- " -
- " - Bam - " - Bang - " - Diba - " - Dou - " - Dou - " - Dscf - " - Garc - " - Mar - " - Mar - " - Nacl - " - Ngac - " - Ngac	shitsi (Giheta)	499	2	1157	Stocking & Elwell (1976)
- Bang - Bang - Bato - Diba - Dou - Dou - Doct - Doct - Garo - Mary - Mary - Mary - Nacl - Nacl - Ngao - Ngao - Ngao	ia	818	2	1428	Bresch (1993)
- " - Bato - " - Diba - " - Dou. - " - Doct - " - Garo - " - Maro - " - Maro - " - Nact - " - Ngao - " - Ngao	renda	1395	6	2315	- " -
" Diba " Dou. " Dsch " Garc " Mar- " Meig " Nga- " Nga- " Nga-	gangte	569	1	1239	Nill (1993)
- " - Dou - " - Dsch - " - Garc - " - Marc - " - Meig - " - Nacl - " - Ngac - " - Ngac	ouri	750	11	1472	Bresch (1993)
- " - Dsch - " - Garc - " - Mar - " - Meig - " - Nacl - " - Nga - " - Nko	amba	1627	1	2220	Nill (1993)
" Garc " Marc " Meig " Nacl " Ngac " Nko	iala	3231	11	3566	Bresch (1993)
- " - Maro - " Marig - " - Nacl - " - Nga - " - Nko	hang	1084	4	1970	Seguy (1971)*2
" - Meig " - Nacl " - Nga " - Nko	oua	469	8	924	Bresch (1993)
– " – Nacl – " – Nga – " – Nga	oua	546	12	752	- " -
– " – Nga – " – Nko	ganga	858	10	1477	- " -
- '' - Nko	htigal	1063	3	1320	Nill (1993)
1440	oundéré	746	14	1485	Bresch (1993)
- " - Penł	oundja	1015	8	1901	_ " _
	ka Michel (Bansoa) 777	4	1560	Nill (1993)
- " – Poli		1326	4	1388	Bresch (1993)
" – Yao	oundé	942	13	1593	_ " _
Cameroon Yok	0	667	8	1542	_ " _
Chad Deli	i	954	22	1100	Audry (1974)*2

Table 11-1 Annex:Erosivity, rain volume, measurement period
for single sites

Table 11-1 Annex, continue

country	site	erosivity	measure-	mean	literature
		•	ment	annual	
			period	rain	
		[N/h]	[a]	[mm]	
Ivory Coast	Abidjan	2186	27	2100	Roose (1975)
_ " _	Azaguić	1535	41	1770	- " -
	Bouaké	902	60	1160	Roose & Bertrand (1971)*2
	Divo	1457	29	1680	Roose & Jadin (1969)*2
_ '' _	Korhogo	1249	47	1440	Roose (1975)
Kenya	Eldoret	387	10	1226	Wenner (1977)*3
_ " _	Kisumu	906	10	1186	_ " _
_ " _	Kitale	564	10	1169	
_ " _	Lodwar	113	10	232	_ " _
_ " _	Malindi	359	10	1101	"
- " -	Mombasa	297	10	1130	<u> </u>
_ " _	Nairobi (Kabete)	368 (?)	10	909	_ " _
_ " .	Nakuru	224	10	827	_ " _
	Nanyuki	210	10	752	- " -
" _	Narok	267	10	869	
_ " _	Voi	283	10	516	- " -
Madagascar	Befandriana	2386	2	2030	CTFT (1973)*2
Niger	Allokotol	99	6	437	Delwaulle (1973)
Nigeria	Calabar	2217		-	Armon (1984)*1
- " -	Enugu	1209		-	_ " _
	Ibadan	1009	3	-	Lal (1976b)
	Ikom	1948		~	Armon (1984)*1
	Nsukka	1281	12	_	Salako (1988)
- " -	Onitsha	1578		_	Armon (1984)*1
_ " _	Owerri	1855	12	-	Salako (1988)
_ " _	Port- Harcourt	1861	12	_	
_ " _	Umudike	1592	12	_	
Rwanda	Butare	324	10	930	Ryumugabe & Berding (1992)
_ " _	Gakuta	693	10	1409	_ " _
"_	Gisenyi	274	10	896	
_ " _	Kamembe	379	10	1230	_ " _
	Kigali (airport)	426	10	855	
	Ruhengeri	311	10	1135	- " -
Senegal	Bambey	564	47	650	Charreau & Nicou (1971)*2
_ " _	Séfa	1136	54	1310	_ " <u>-</u>

country	site	erosivity	measure-	mean	literature
			ment	annual	
			period	rain	
		[N/h]	[a]	[mm]	
Zambia	Chipata	685	10	1036	Pauwelyn et al. (1988)
- " -	Kabompo	512	10	1062	_ " _
_ " _	Kabwe	560	10	934	- " -
"	Kafua Polder	525	10	779	- " -
- " -	Kasama	791	10	1217	- " -
- " -	Mwinilunga	842	10	1391	_ " _
	Ndola	798	10	1217	- " -
"	Sesheke	343	10	733	_ " _
Zimbabwe	Beitbridge	40	10	295	Stocking & Elwell
					(1976)
- "	Chipinga	134	20	1141	_ " _
	Chisumbanje	86	10	569	_ " _
- " -	Dett	77	10	606	- " -
- "	Enkeldoorn	83	10	615	_ " _
" -	Fort Victoria	85	25	625	_ " _
_ " _	Gokwe	112	10	752	_ " _
- " -	Inyanga	102	10	869	- " -
_ " _	Karoi	114	10	833	_ " _
	Lupane	71	10	540	- " -
- "	Salisbury	117	25	812	- " -
³⁴	Tjolotjo	48	5	529	- " -
- " -	Tuli	49	15	385	- " -

*1 in: Salako (1988)

*2 in: Roose (1975)

*3 in: Moore (1979)

Annex 1.2 Erosivity regressions

See if your own site is listed in *Table 12-1 Annex* or if it is close to a site listed there. There is no evidence as to how far these regressions can be used apart from the specific sites for which they were calculated. However, the quality of rain will generally not change in the same geographic area within some kilometers. A qualitatively similar rainfall is presumed which can differ in volume.

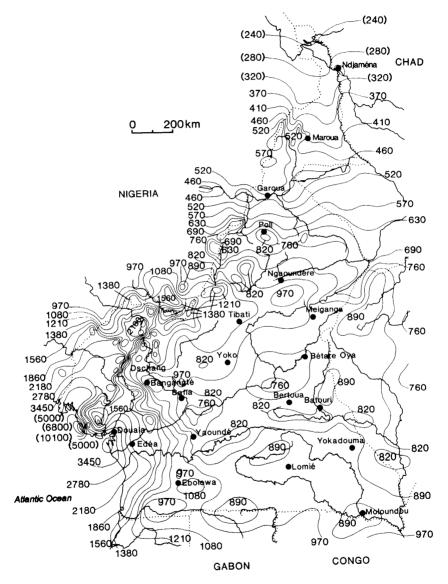
If regressions in *Table 12-1 Annex* are given for single storms, the mean annual EI_{30} is calculated by summation of the storm erosivity for several years. It is not possible to use these regressions with annual rain volumes.

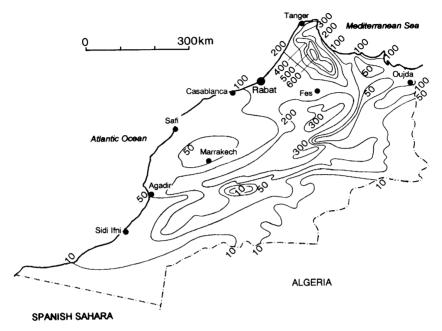
Table 12-1 Annex: Regressions for the calculation of erosivity $(P_{ann} = mean annual rain volume [mm],$ $EI_{30} = mean annual erosivity; EI_{30i} = erosivity of a storm i;$ $P_i = rain volume of a storm i)$

No. country/ area		location	regression	remarks	literature
			EI ₃₀ [N/h]		
1	Burkina Faso	Bobo- Dioulasso	El _{30i} = 0.0158*Pl _{30i} -1.24	for single storms; regressions for No. 1 and 2 were very similar to equation No.3. Delwaulle therefore proposed to use No. 3 for the sahel region between 440 and 1160 mm	Galabert & Millogo (1973) in: Delwaulle (1973)
2	" <u>.</u> .	Dori	see No. 1		- " -
3	_ " -	Gampela and Gonsé near Ougadougou	$EI_{30j} = 0.0158 * PI_{30j}$ -1.2 r ² > 0.98; n = 7 years of single storms	for single storms; both sites had very similar rain distribution and were evaluated together with Allokoto/Niger	Delwaulle (1973)
4	Cameroon	all	$EI_{30} = (11+0.012*Pann)^2$ $r^2 = 0.91$	18 stations with 3 to 14 years each	Bresch (1993)

No.	country/ area	location	regression	remarks	literature
			EI ₃₀ [N/h]		
5	Kenya	coastal zone	EI ₃₀ = 1.149*Pann-840	calculated for Lamu,	-"-
		to 50 km		Malindi, Mombasa, Dar es	
		inland		Salaam and Zanzibar ^{*1}	
6	- " -	inland < 1250	EI ₃₀ = 0.571*Pann-80	calculated for Lodwar,	- " -
		m altitude		Makindi, Voi, Dodoma,	
		manuae			
				Kigoma, Mwanza and Tabora*1	
				Tabora 1	
7		in here 1 + 1250	EL 0.2708B	1 1	
/			$EI_{30} = 0.269*Pann+113$	calculated for Eldoret,	
		m altitude		Equator, Kitale, Nairobi	
				Airport, Dagoretti, Kabete	
				and Wilson, Nakuru,	
				Lyamungu and Mbeya ^{*1}	
8	- "	Uganda pla-	El ₃₀ = 0.833*Pann-396	calculated for Kisumu.	
		teau		Entebbe, Foprt Portal,	
				Gulu, Jinja, Kabale,	
				Kampala, Kasese,	
				Masindi, Mbarara and	
				Tororo ^{*1}	
				TOTOTO 1	
9	_ " _	Katumani/	$EI_{30i} = 0.9 * P_i - 97.4$	regression for single	Ulsaker &
ĺ.		Machakos	$r^2 = 0.9; n = 35$	storms based on 35 events	
		Machakos	$1^{-} = 0.7, 11^{-} = 3.5$	storms based on 5.5 events	(1984)
					(1904)
10	- " -	Katumani/	$EI_{30i} = 0.0206PI_{30i}$ -3.9	_ " ~	~ " -
• • •		Machakos	$r^2 = 0.99; n = 35$		
		Machakos	1 = 0.77, n = 55		
11	Niger	Allokoto	El _{30i} = 0.0158*Pl _{30i} -1.2	see No. 3	Delwaulle
••	. iigei	,	E1301 - 0101100 11301 112		(1973)
					(1770)
12	Nigeria	Alore	$EI_{30i} = (0.12 \pm 0.18P_i)^2$	for single storms	Nill (1993)
			$r^2 = 0.87; n = 240$	6	
13	- " -	Ibadan	$EI_{30i} = (1048 * P_i - 1059) * 0.017$	for single storms;	Lal (1976b)
• • •			$r^2 = 0.67$	regression for storms of 3	
			$1^{-} = 0.07$	-	
				years	
1.1	Rwanda	all	El ₃₀ ca. (0.433*Pann)	based on 6 stations	Ryumugabe
1-4	K wanua	an	E130 cu. (0.455 Tulli)	and 10 years	& Berding
				and to years	(1992)
					(1774)
15	Sahel		$EI_{30} = 0.87 * Pann$		Roose (1977)
1.5	Saller		1.1.30 = 0.07 1 ann		
16	Tanzania	see No. 5 to 8	use regressions No. 5 to 8	see No. 5 to 8	Moore (1979)

No.	country/ area	location	regression	remarks	literature
			EI ₃₀ [N/h]		
18	Zambia	all	$EI_{30i} = 0.0236*P^{1.91}$ $r^2 = 0.71, n = 2348$	for single storms	Pauwelyn et al. (1988)
19	- " -	Chipata	$EI_{30i} = 0.0256P_i^{1.95}$ $r^2 = 0.74, n = 292$	- ⁹ -	_ " _
20	"	Kabompo	$EI_{30i} = 0.0234^{*}P_{i}^{1.98}$ $r^{2} = 0.72, n = 248$	- "	
21	_ " _	Kabwe	$\begin{split} EI_{30i} &= 0.0235^* P_i^{1.87} \\ r^2 &= 0.67, n = 261 \end{split}$	- " -	- " -
22	_ " _	Kafue Polder	$\begin{split} EI_{30i} &= 0.0253 * P_i^{1.82} \\ r^2 &= 0.74, n = 213 \end{split}$	_ "	
2.3		Kasama	$\begin{split} EI_{30i} &= 0.0217*P_i{}^{1.96} \\ r^2 &= 0.71, n = 349 \end{split}$	^{**}	" _
24	D	Mwinilunga	$\begin{split} EI_{30i} &= 0.0229^* P_i^{-1.96} \\ r^2 &= 0.72, n = 392 \end{split}$	- " -	u.
25	·· " =	Ndola	$\begin{split} EI_{30i} &= 0.0226^* P_i^{1.88} \\ r^2 &= 0.72, n = 378 \end{split}$	- " -	
26		Sesheke	$EI_{30j} = 0.0248 * P_i^{1.85}$ r ² = 0.67, n = 215	· " _	- " -
27	Zimbabwe	all	$EI_{30} = 0.215$ *Pann-51.1 $r^2 = 0.61$, n = 66		Stocking & Elwell (1976)
28	- " -	Eastern districts	$EI_{30} = 0.183*Pann-54.2$ $r^2 = 0.83, n = 10$		- " -
29	_ " _	Highveld	$EI_{30} = 0.262 * Pann-81.1$ $t^2 = 0.5, n = 24$		- " ·
30	- " -	Lowveld	$EI_{30} = 0.267*Pann-59.6$ $r^2 = 0.44, n = 19$		- " -
31	- " -	Middleveld	$EI_{30} = 0.497 * Pann-223$ $r^2 = 0.44$, $n = 19$		" –

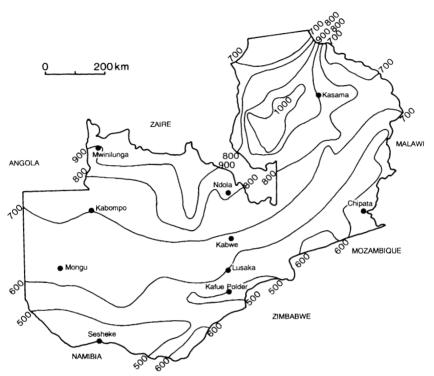

^{*1} Regressions in Moore (1979; Table 3) for $KE_{15} > 25$ were entered into regression: EI_{30} [ft.tons*in/acre*a] = 0.029*KE>25-26; r² = 0.9 which was calculated from 11 stations in Kenya (Wenner, 1977) and multiplied by 1.735 in order to transform to SI units


Annex 1.3 National iso-erodent maps

RWANDA 0 10 50km , ³⁰ \$⁰ Kirundo (³90 0'0 ્રું Ngozi Kayanza Cibitoke li) Bubanza Karuzi • Cankuzo ZAIRE Muramvya Bujumpura Gitega Lac TANZANIA Ó Bururi Tanganyika Rutana Makamba 4

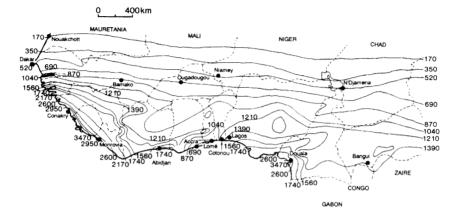
Burundi (Simonart et al., 1993)

Cameroon (Bresch, 1993)

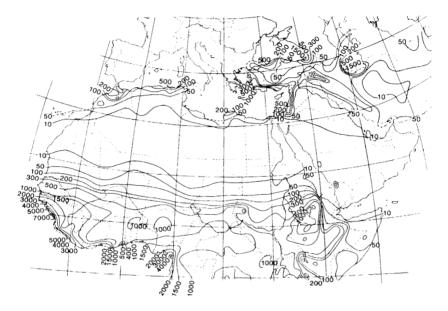


Marocco (Arnoldus, 1977)

South Africa (Smithen & Schulze, 1982)

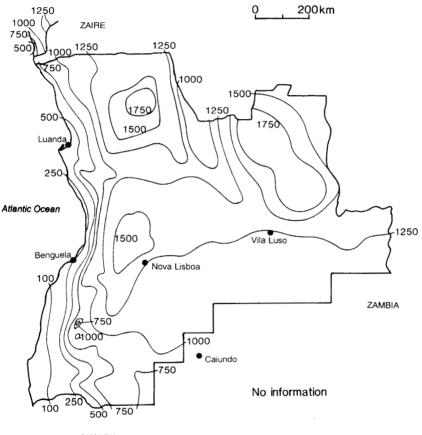


Zambia (Lenvain et al., 1988)

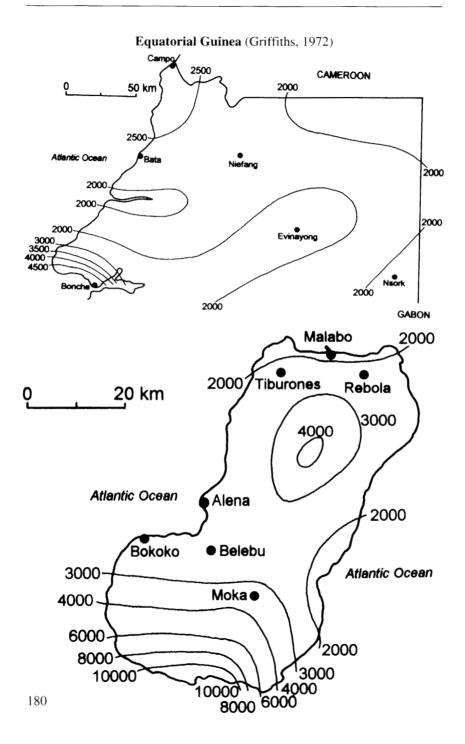


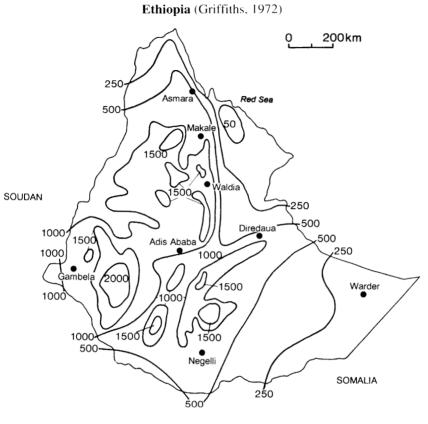
Zimbabwe (Stocking & Elwell, 1976)

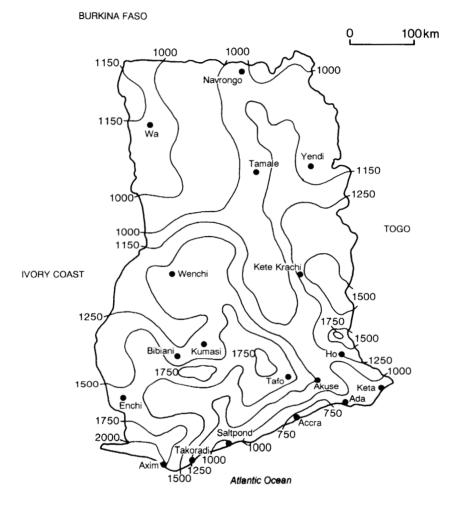
Annex 1.4 Regional iso-erodent maps



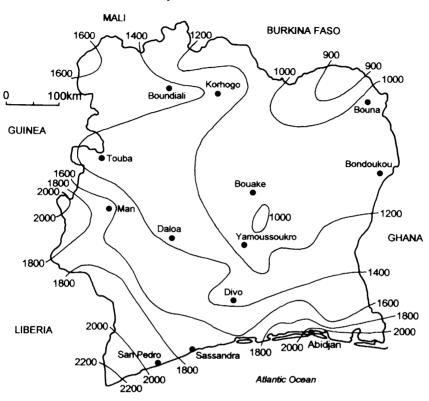
West Africa (Roose, 1977)

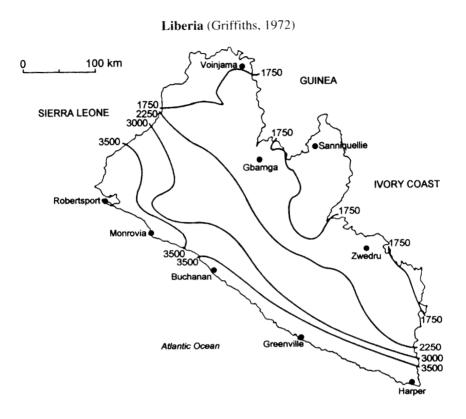

Africa north of the Sahara (Arnoldus, 1978)

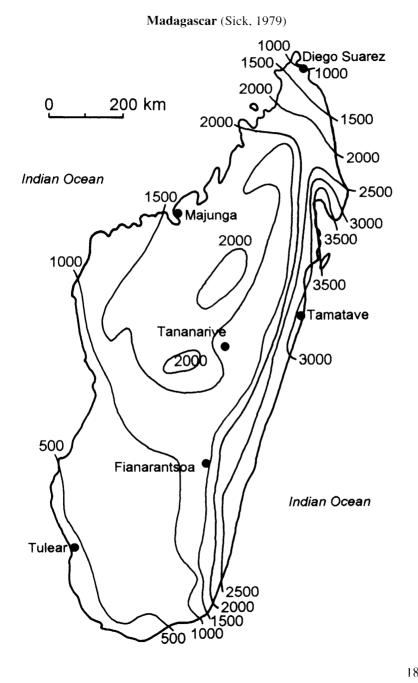

Annex 1.5 National rainfall distribution maps

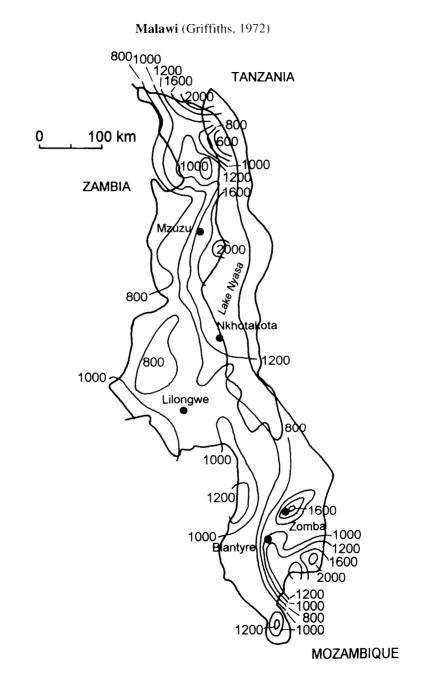

Angola (Griffith, 1972)

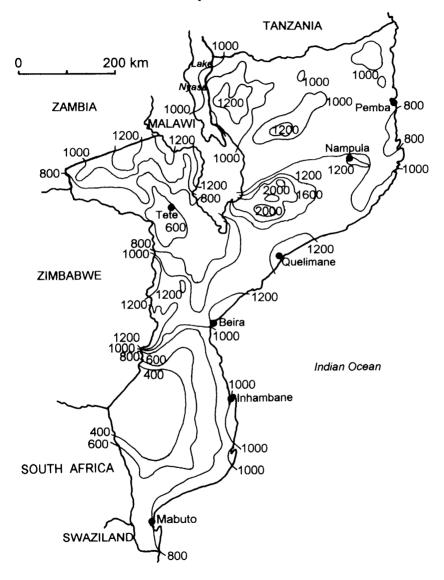
NAMIBIA



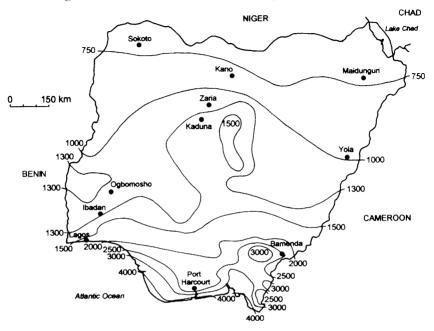

KENYA

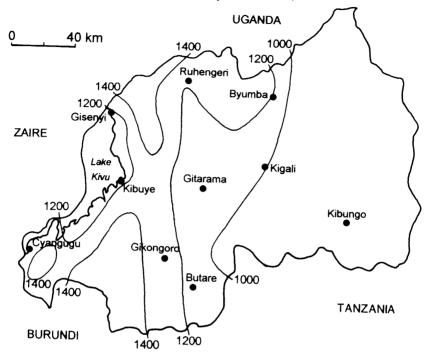


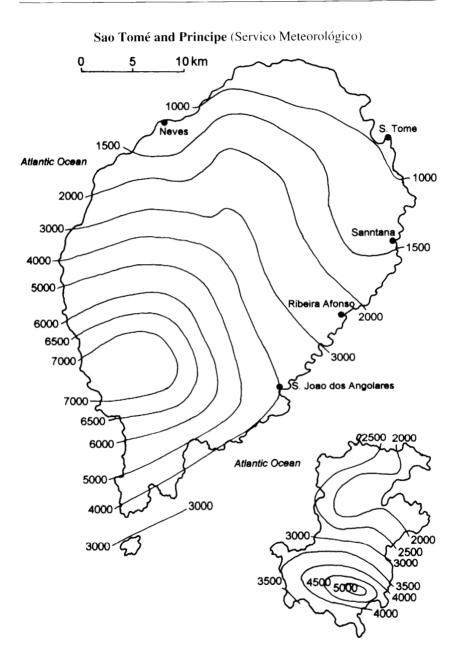

Ghana (von Gnielinski, 1986)

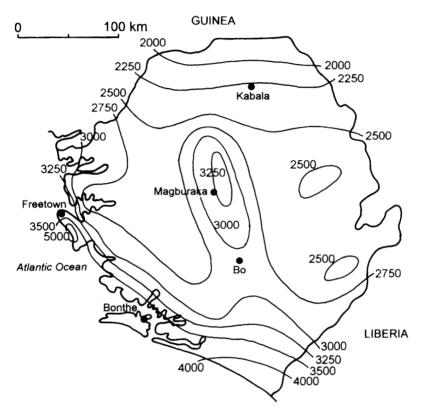


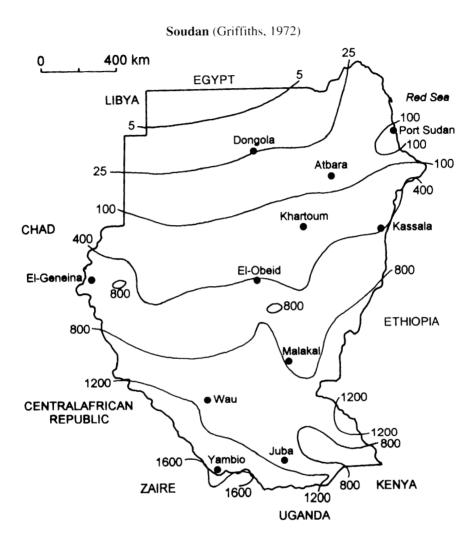
Ivory Coast (Wiese, 1988)

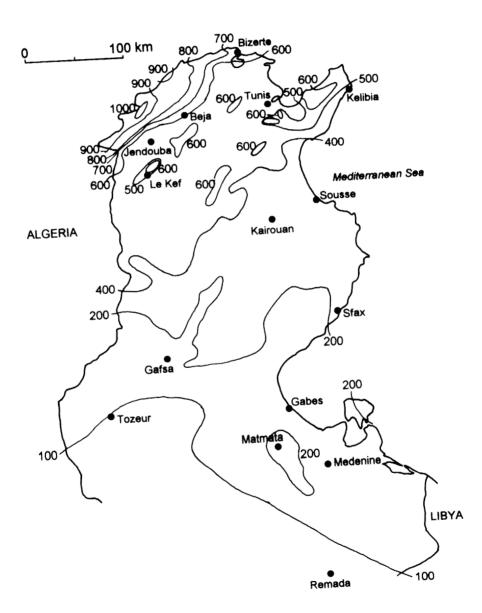





Mozambique (Nelson, 1984)


Nigeria (British West African Meteorological Service, 1954)


Rwanda (Moeyersons, 1989)



190

Sierra Leone (Griffiths, 1972)

Tunisia (Schliephake, 1984)

for single sites
distribution for
volume and dis
1.6 Rain v
Annex

Rain volume and distribution are generally easy to be found locally. However, from abroad it is difficult to collect local information. The data which were found in literature are listed in Table 16-1Annex in order to save efforts and for the preparation of a more complete future list.

Table 16-	Table 16-1Annex: Annual rain volume and monthly distribution	volume :	und mo	- Árunuc	ornsin	nuon										
					rain v	olume	and o	listrib	rain volume and distribution [mm	[mm]						
country	site	annual	jan	feb	mar	apr	may	nní	luį	aug	sep	oct	nov	dec	record in years	literature
Algeria	Ain Sefra	192	9	9	4	6	15	28	×	5	15	29	29	18	15	Griffiths (1972)
,	Aloier	762	113	84	74	41	46	15	7	4	40	78	129	136	¢.	*4
;	Oran	428	63	46	4	37	27	6	-	С	4	29	LL	82	¢.	:
:	Orleansville	400	55	45	39	32	37	6	-	-	20	35	60	66	25	Griffiths (1972)
;	Setif	468	60	45	43	36	51	28	Ξ	13	37	39	53	52	25	;
:	Skikda	829	169	108	72	50	50	10	4	2	34	84	92	149	12	;
;	Tehessa	335	33	26	38	30	38	29	10	10	33	29	30	29	24	1
Angola	Banana	782	28	167	152	140	107	0	0	-	0	20	95	70	¢.	;;
	Cabinda	671	59	109	85	117	56	-	0	-	9	34	114	89	¢.	^寸 *
:	Cangamba	1027	225	187	172	46	-	0	0	5	Ś	41	130	215	7	Griffiths (1972)
;	Landana	1045	86	185	192	185	95	0	0	-	ŝ	57	182	59	÷۰	;
:	Lobito	267	19	38	81	63	Ś	0	0	0	-	13	20	27	÷٠	;
;	Luanda	367	26	35	79	124	61	0	0	-	C 1	9	34	53	30	1 5 1
;	Mocamedes	50	7	01	17	Ξ	0	0	0	0	0	-	C 1	C1	÷.	\ *
;	Nova Lisboa	1387	209	179	231	144	16	0	0	-	19	124	231	233	20	Griffiths (1972)
;	Sa Da Bandeira	116	140	153	172	94	9	-	0	C	4	70	118	153	30	;
;	Teixeira De Sousa	1336	228	218	236	112	=	=	-	+	5	68	181	33	20	

onthly distribution Ē . , 12

					rain	volur	ne and	l distr	rain volume and distribution [mm]	um] m	[r					
country	site	annual	jan	feb	mar	· apr	may	jun	luť	aug	sep	oct	vou	dec	record	literature
															in years	
Benin	Cotonou	1339	36	51	104	134	201	338	120	5	82	164	68	16	30	;
;;;	Kouand	1199	0	0	123	5	103	101	307	285	227	48	0	0	—	GTZ (personal
																communication) ⁴
	Natitingou	1342	З	×	26		126	162	221	254	311	118	33	Ś	30	Griffiths (1972)
;	Pehunco	617	0	0	24	25	151	67	72	235	171	34	С	0	-	GTZ (personal
																communication) ²
	Pobe	1152	13	32	96	142	172	186	125	58	129	147	4	10	29	Griffiths (1972)
	Tchaorou	1212	7	15	58	104	141	161	165	163	214	161	16	7	30	; ;
;	Tobr	827	0	0	22	0	113	104	123	231	153	81	0	0		GTZ (personal
																communication)
Botswana	Ghanzi	446	98	94	74		×	-	С	0	C1	21	43	99	30	Griffiths (1972)
	Mahalapye	511	84	95	LL		10	9	ŝ	сı	٢	28	72	76	30	; ;
;	Maun	488	110	102	85		51	-	0	0	-	15	46	80	30	; ;
;	Tsabong	271	37	50	46	31	Ξ	8	~		Ξ	13	5	39	20	; ;
Burkina Faso		1113	-	~	17	48	108	130	208	308	206	74	10	-	50	;
	Dioulasso															
	Ouagadougou	897	0	0	13	16	83	122	203	280	144	33		0	15	: '
Burundi	Bujumbura	848	94	109	121	125	57	Ξ	5	Ξ	37	64	100	114	30	;
;	Kisozi	1447	167	160	196	228	120	12	9	16	64	115	174	189	30	;
:	Rubona	1179	111	156	140	183	164	23	7	27	63	102	110	93	30	;
Cameroon	Abong Mbang	1647	26	57	135	169	203	174	76	100	251	306	114	36	1 0	Suchel (1972)
;	Akonolinga	1467	24	33	123	149	186	143	68	87	225	278	611	32	31	:
:	Ambam	1697	4	6L	162	197	212	134	45	48	208	302	183	86	29	:
;	Bafoussam	1796	Ξ	31	102	181	181	187	232	223	295	280	63	10	32	:
;	Bafut	2424	18	47	176	184	202	312	404	284	386	265	114	32	Г	;
;	Bamenda	2596	26	54	172	189	206	318	408	375	482	253	83	30	30	;
;	Bansoa	1742	12	38	119	160	176	228	222	167	303	233	71	2		[3 - " -

			ļ		rain v	olumo	c and o	rain volume and distribution [mm]	ution	mm						
country	site	annual	jan	feb	mar	apr	may	jun	luį	aug	sep	oct	nov	dec	record	literature
•															in years	
Cameroon	Batouri	1436	31	5	96	128	161	155	101	125	224	236	96	38	30	3
;	Berberati	1539	5	53	06	134	163	153	137	192	215	268	06	23	÷٠	Griffiths (1972)
;	Buea	2875	33	62	143	186	230	262	458	548	502	339	85	27	34	Suchel (1972)
;	Campo	2797	118	148	205	288	347	192	73	131	440	506	252	67	22	;
:	Debundscha	10299	271	319	545	510	757	1232	1460	1372	1588	1204	658	383	÷.	Griffiths (1972)
;	Douala	3995	63	60	204	224	292	487	741	728	542	397	161	66	49	Suchel (1972)
;	Edea	2710	37	4	178	249	311	284	234	304	450	403	168	50	ċ	Griffiths (1972)
:	Ekona-CDC	2316	26	4	123	169	202	233	384	424	365	242	95	6	18	Suchel (1972)
;	Foumban	1897	4	5	94	150	161	176	268	311	325	278	70	6	32	;
;	Garoua	1060	0	С	٣,	47	128	166	193	227	222	71	-	3	20	;
:	Godola	882	С	0	-	19	40	105	231	328	138	20	0	0	8	;
;	Guider	935	0		Ś	30	105	134	187	240	165	65	ŝ	С	34	:
;	Jakiri	2042	×	45	143	157	176	247	301	337	303	271	48	9	14	;
;;;	Kaele	915	0	0	4	30	79	135	206	241	190	29	_	0	22	;
;	Kounden	2068	×	33	93	153	186	224	366	305	347	272	61	20	15	;
; ;	Kribi	3028	102	128	203	264	378	257	117	234	512	540	197	96	30	Griffiths (1972)
;	Kumbo	1863	6	33	126	142	175	193	284	274	325	232	59	Ξ	33	Suchel (1972)
;	Limbe	4299	50	X	124	171	311	849	1137	817	428	235	97	26	16	:
	Lolodorf	2093	39	LL.	183	271	279	195	60	82	272	377	201	57	27	:
;	Lomie	1654	40	57	123	175	182	145	16	142	257	268	129	45	37	;
;	Loum	2993	40	65	159	216	269	360	416	462	480	369	128	29	61	;
;	Makak	1822	30	57	178	215	238	145	58	65	244	371	157	34	-1	;
1	Mankim	1578	ŝ		140	126	144	061	108	103	286	300	136	16	×	;
;	Maroua	784	С	0	-	Ξ	66	98	169	264	149	72	С	0	21	;
;	Mbalmayo	1455	27	58	122	167	200	#	65	65	154	287	133	£	19	;
- : -	Moliwe	3489	61	69	134	193	208	191	980	743	385	207	84	5	17	:

ttry site amu eroon Moloundou I Mora Mora Nanga Eboko I Ngaoundere Ngaoundere Nganbe 2 Nkombe 2 Nkombe 2 Nkombe 2 Nkombe 2 Nkombe 2 Nyombe 3 Nyombe	jar 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3		mar apr		nay jı	i(unį	iul a	3110 5	sep oct				record	
eroon Moloundou Mora Nanga Eboko Ngaoundere Ngaoundere Ngaoundere Ngaoundere Nyombe Penja Rey Bouba Santa Santa Tchollire												Nou	aec	in years	literature
Mora Nanga Eboko Ndikinimeki Ngaoundere Ngoulemakong Nkongsamba Ntui Nyombe Penja Rey Bouba Santa Santa Santa Santa	0 - 0	• • • • • •		137 1	79 14	47 1	10	11	93	222	509	135	63		Griffiths (1972)
Nanga Eboko Ndikinimeki Ngaoundere Ngaoundere Nkamba Nkongsamba Ntui Nyombe Penja Rey Bouba Santa Santa Santa Tchollire					13	59	16	85	265	121	17	0	0	30	Suchel (1972)
Ndikinimeki Ngaoundere Ngaoundere Nkamba Nkongsamba Ntui Nyombe Penja Rey Bouba Santa Santa Tchollire	- (1		-	.1	70 2(204	50	16	8	263 2	663	96	26	34	;
Ngaoundere Ngoulemakong Nkambe Nkongsamba Nutu Nyombe Penja Rey Bouba Santa Santa Tchollire	~	• • • • •	4	17 1	1 02	170	53	84	115	269 2	293	88	10	32	;
Ngoulemakong Nkambe Nkongsamba Ntui Nyombe Penja Rey Bouba Santa Santa Tchollire	(1			52 1.	146 2.	235 2	210	246	269	265 1	147	12	ŝ	14	
Nkambe Nkongsamba Nyunie Nyombe Penja Rey Bouba Santa Santa Tchollire			89 17	42 24	246 2	234 1	171	69	76	217 3	353	167	26	Π	
Nkongsamba Ntui Nyombe Penja Rey Bouba Santa Santa Tchollire			24 8	86 1.	11 10	161 2	288 2	483 4	483	439 2	288	74	9	6	;
Ntui Nyombe Penja Rey Bouba Santa Santa Tchollire	-		53 15	151 14	199 2	226 2	261 4	431 4	482	476 3	345	103	19	34	; ;
Nyombe Penja Rey Bouba Sangmelina Tchollire			44 1.	129 1	I 661	59 1	[59	52	62	170 3	316	84	2	10	;
Penja Rey Bouba Sangmelina Santa Tchollire	2690 2	. 62	70 15	153 1	185 2	234 2	283	389	394	426 3	387	123	17	12	
Rey Bouba Sangmelina Santa Tchollire	3084 3	30	83 2	213 2	235 24	243 3	335 4	417	133		407	140	38	15	;
Sangmelina Santa Tchollire	177	0	0	×	33 L	120	160	238	590	235	87	9	0	11	; ;
Santa Tchollire	1710 4	41	65 12	146 1	198 2	212 1	691	81	8	242 2	276	151	45	35	; ; ;
Tchollire		10	35 14	148 20	204 2	233 2	289	269	254	` '	310	67	16	10	;
T:1	1407	0	_	61	1 11	37 1	195	275	307	295	96	S	0	17	;
	1748	4	13	64	34	183 2	206	278	270	297 2	248	45	9	29	;
Tignere		0	S	39 1	22	94	67	242	274	236 1	147	22	-	13	;
	2844 2	51	49 1.	27 1	74 1	95 4	400	546	560	308 2	231	119	14	17	÷ ,
Wakwa	1737	0	ŝ	37 1	99	237 2	254 2	240	325	275	51	13	٣,	×	;
Yabassi	2692 4	42	58 1.	39 1	99 2	242 3	307	383	417	413 3	341	124	27	36	;
Yagoua	821	0	0	4	21	58]	24	182	272	141	18	-	0	33	;
try St. Cruz de la	141 8	8	38	36	20	10		-	٣,	10	38	127	76	¢٠	*4
Islands Palma															
- " - Tetia 1	115	38	13	ŝ	×	m	_	c	-	-	S	15	25	¢٠	*4

				²	un vol	ume a	rain volume and distribution [mm]	tribut	ion [n	[m						
country	site	annual	ian	feb	mar	apr	may .	, unį	luį.		sep	oct	nov c	dec 1	record	literature
commo			•							1					in years	
Central Africa	Bahona	1572	=	5	83	116	161	193	170	239	290	228	47	01	13	Suchel (1972)
	Baneui	1560	51	47	124	128	173	135	185	225	185	202	101	5	30	Griffiths (1972)
;	Berherati	1530	$\overline{20}$	47	68	140	159	159	135	195	221	257	85	53	31	Suchel (1972)
;	Birao	860	0	0	¢1	61	79	112	217	204	171	37	—	0	30	Griffiths (1972)
;	Bouar	1575	ŝ	27	75	122	139	174	198	316	282	197	36	4	31	Suchel (1972)
:	Ndim	1661	0	9	33	88	159	233	323	327	295	189	×	0	16	;
:	Nola	1451	26	4	108	133	151	167	138	161	661	176	601	39	25	:
;	Salo	1698	29	63	146	154	154	155	149	195	214	236	6†-I	54	16	: ,
;	Sarki	1375	_	ŝ	33	89	145	190	265	274	225	137	Ξ	0	4	;
Chad	Ahch	435	0	0	0	<u></u>	18	34	112	207	56	9	0	0	31	unknown
	Abdv	401	0	0	0	0	10	96	115	158	28	0	0	0	2	;
:	Abfcher	505	0	0	0		24	26	141	232	67	4	0	0	30	Griffiths, 1972
:	Ade	568	С	0	0	0	~	44	122	258	142	0	0	0	0	;
;	Adre	617	С	0		ŝ	19	44	233	229	76	10	0	0	28	unknown
:	Am Dam	665	0	0	0	ব	19	102	204	224	76	15	0	0	23	:
;	Am Zoer	322	0	0	0	-	6	61	84	165	43	0	0	0	17	;
;	Aoue	530	0	0	0	0	-	71	Ξ	262	86	0	0	0	0	;
:	Biltine	297	0	0	0	-	9	22	85	143	33	×	0	0	19	;
;	Bol	310	0	0	0	0	5	01	71	172	1 5	Ś	0	0	28	Suchel (1972)
:	Bongor	882	0	0	ŝ	51	75	133	187	264	176	20	—	0	20	;
:	Fort-Lamv	633	C	0	0	×	28	66	156	251	103	-1	0	0	35	: '
;	Goz-Beid	683	0	0	-	9	26	68	273	185	105	19	0	0	26	;
:	Guerada	300	0	0	С	-	+	61	105	641	5	C 1	¢	0	17	unknown
;	l r	831	С	0	ŝ	31	1 9	120	175	215	180	Ŧ	0	¢	50	Suchel (1972)
;	Moundou	1207	0	0	12	*	112	161	242	299	240	89	-+	0	т. Т	:
:	Pala	1065	0	0	7	7	101	165	234	245	198	Ę	-+	=	5	; ;
							i									

	!				rain	volur	ne ano	l distr	rain volume and distribution [mm	um] r	_					
country	site	annual	jan	feb	mai	mar apr	· may	v jun	luť	aug	dəs	oct	VOU	dec	record	literature
Chad	Pandzmana	1901		-	1	5	07	160			750	1001		<	In years	
		1071		-	-				4		007	8	٥	0	287	;
Congo	Libreville	2592	206	191	264				0	=	106	359	416	260	÷.	र ्ग *
;;	Ouesso	1636	64	85	142	131	177	137	* *	143	223	215	155	80	32	Suchel (1972)
;	Sembe	1580	60	103	177	661) 163	101	55	72	202	197	186	65	Ξ	-
;	Souanke	1734	52	83	188	198	3 220) 113	80	96	232	258	166	48	5	:
Egypt	Alexandria	192	48	28	4		~	0	0		0	×	32	56	÷	₩ *
;	Port Said	66	Ξ	12	6		3	0	-	0	0	C 1	6	18	÷	· 7*
- : -	Salum	119	16	7	13		4	0	0	,	_	17	40	20	÷	÷
;	Ras Asir	64	×	-	-		~	1	0	-	1	0	32	10	÷	+ + *
Equatorial	Bata	2185	120	119	223	280) 283	17	17	61	202	431	306	108	17	Suchel (1972)
	Ebshinin	0021	ì	c r	-					,						
	EDEDIYIN	06/1	9 <u>2</u>	0	4				46	61	221	387	207	103	12	; '
	Evinayong	2560	132	324	235		279	156	ŝ	31	239	367	299	163	10	Griffiths (1972)
;	Malabo	1898	32	64	107	182	238	281	189	167	243	264	89	42	16	;;;
;	Micomeseng	1646	39	100	166			88		28	197	310	201	81	8	Suchel (1972)
;	Niefang	2112	50	66	228			126		42	269	369	292	97	13	Griffiths (1972)
:	Rio-Campo	2630	68	78	170	C1	(r)	_	59	115	416	568	283	96	11	Suchel (1972)
Eritrea	Asmara	468	-	-	10	37		32	170	127	33	2	10	0	29	Griffiths (1972)
Ethiopia	Adi Ugri	566	0	-	15	31	34	64	193	161	49	2	10	-	27	' ;
:	Adis Ababa	1257	16	4	70	86		136	282	294	192	5	15	9	42	, ;
;	Assab	28	0	-	0	0	0	0	5	C	0	0	9	16	ċ.	;
:	Dire Dawa	610	20	29	43	83		53	108	165	70	12	17	10	15	;'
;	Ghinda	749	152	89	80	74	- 58	15	48	52	30	77	52	22	¢.	;
	Harar	890	Ξ	32	60	109	121	101	142	137	86	46	5	10	22	;
;;	Jimma	1529	¢٠	48	82	180	150	220	231	214	192	87	39	37	15	: .
Ethiopia	Massawa	194	26	36	15	21	٣,	_	×	-	2	18	51	42	¢.	:
	Neghelli	550	×	+	33	172	102	×	9	5	16	611	52	53	Ξ	: -

					ra	in volt	rain volume and distribution [mm]	d disti	ributio	nm] n						
country	site	annual	jan	feb	mar	apr	may	jun	luį	aug	sep	oct	vou	dec	record	literature
															in years	
Gabon	Bitam	1746	49	72	182	161	231	101	26	37	277	297	208	75	12	Suchel (1972)
;	Libreville	2592	206	291	264	395	244	40	0	Ξ	106	359	416	260	18	Griffiths (1972)
;	Makokou	1754	83	124	255	245	182	51	5	18	132	331	210	118	ċ	
;	Medouneu	1961	155	163	235	199	160	59	4	4	168	337	301	172	ċ	- * - * -
;	Mekambo	1661	LL	130	182	174	178	88	28	70	153	268	209	104	¢.	;
;	Minvoul	1529	42	79	139	155	194	122	47	55	200	263	175	58	13	Suchel (1972)
;	Mitzic	1842	118	110	226	207	222	46	01	14	150	346	247	146	30	Griffiths (1972)
Ghana	Accra	787	16	37	73	82	145	193	49	16	40	80	38	18	ć	*4
;	Ada	864	٢	18	72	94	174	208	57	12	61	66	47	15	ċ	von Gnielinski
																(1986)
;	Akuse	1118	23	46	105	128	163	180	65	39	96	131	102	40	ċ	;
;	Axim	2129	51	62	129	142	420	535	156	54	87	205	192	96	с·	
*,	Enchi	1651	41	65	138	160	210	270	143	75	161	210	125	53	¢.	· · ·
:	Но	1421	36	78	139	145	177	183	111	83	149	161	79	50	¢.	1
;	Kete Krachi	i 1404	19	37	82	127	167	192	158	124	223	185	68	22	¢۰	- 5 -
*	Kintampo	1567	8	40	102	160	186	239	144	117	277	213	68	13	35	Griffiths (1972)
;	Kumasi	1481	17	59	137	145	182	234	126	74	176	202	98	31	ć	von Gnielinski
																(1986)
;	Navrongo	1073	7	4	19	50	116	126	190	263	231	63	7	ы	ć	· · ·
;	Takoradi	1186	33	37	80	95	245	280	89	36	50	120	83	38	¢.	;
;	Tamale	1053	C 1	6	51	88	121	132	128	189	217	98	13	5	¢۰	;
;	Wa	1111	5	10	42	75	132	145	144	215	234	85	19	2	¢.	:
;	Wenchi	1354	8	42	76	150	178	204	93	69	200	219	75	19	¢۰	
:	Yendi	1186	2	٢	4	95	133	146	153	188	259	132	21	×	¢.	

					rain v	olume	and d	rain volume and distribution [mm	ution [[mm						
country	site	annual	jan	feb	mar	apr	may	jun	luį	aug	sep	oct	NOU	dec	record	literature
Guinea	Bevla	4099	50	147	293	360	631	555	297	490	495	060	274	122	20 20	Griffiths (1073)
;	Conakry	4296	-	~1	S	17	154	564	1321	1057	713	330	122	10	3 6	
;	Kouroussa	1504	0	5	20	63	95	205	264	331	339	152	25	2	27	; ;
;,	Mamou	1963	5	8	23	101	180	236	301	439	368	234	58	01	34	; ;
Ivory Coast	Abidjan	2144	26	42	120	169	366	608	200	34	55	225	188	Ш	ċ.	*4
- + -	Bouake	1210	13	46	92	140	154	135	66	108	225	140	35	23	32	Griffiths (1972)
:	Ferkessedougou	1337	5	25	41	81	149	152	185	305	238	118	30	8	28	; ; ;
1	Sassandra	1503	25	28	65	102	306	500	122	25	32	78	125	95	¢	; ;
;	Tabou	2353	38	70	100	119	412	579	177	66	198	222	222	117	¢.	;
Kenya	Equator	1222	33	34	72	168	142	123	163	205	Ш	53	63	55	25	
· * -	Garissa	298	01	9	27	59	16	\$	-	9	9	21	LL	64	ç٠	
;	Kisumu	1278	57	70	160	195	177	101	68	96	79	2	106	105	32	;
) ; ,	Magadi	398	32	43	99	89	55	×	-	С	S	15	34	47	¢.	- - -
;	Mombasa	1191	26	15	61	200	319	112	89	65	68	83	93	60	¢.	*4
;	Moyale	682	Ξ	17	55	182	118	17	17	17	25	96	86	41	48	Griffiths (1972)
	Nairobi	1066	88	70	96	155	189	29	17	20	34	64	189	115	6	
;	Perkerra	638	23	24	54	86	71	54	95	82	35	36	48	30	27	Sutherland &
																Bryan
;	Port Victoria	2349	386	267	233	183	170	101	84	69	130	155	231	340	¢.	:
:	Voi	538	32	30	73	92	29	٢	С	8	15	27	96	126	59	Griffiths (1972)
Lesotho	Mokhotlong	586	96	85	63	34	26	5	10	15	20	57	83	92	25	1
Liberia	Monrovia	4625	51	71	120	154	442	959	797	354	720	598	237	122	¢.	4*
Lybia	Bengasi	265	67	41	20	4	0	0	0	0	æ	18	46	64	ć	;
;	Derna	285	63	46	25	10	×	-	-	0	0	20	43	66	¢.	:
- ; -	Tripoli	386	8	46	28	2	5	3	-	-	10	41	99	94	ć	;

country site annual jan fab may jun jul ag oct nov dec record literatur Madagassar Ambodifiotora 3599 38 444 574 454 321 344 281 18 75 84 106 102 60 98 731 287 9 67 60 98 77 5 11 281 7 5 11 281 7 5 11 281 10 91 7 5 11 281 17 15 24 77 5 11 281 17 15 24 17 28 111 29 202 14 27 20 91 27 21 84 27 21 24 27 21 24 27 21 24 27 21 24 27 21 21 21 21 21 21 21 21 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>rain v</th> <th>olume</th> <th>and d</th> <th>listrib</th> <th>rain volume and distribution [mm]</th> <th>mm</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						rain v	olume	and d	listrib	rain volume and distribution [mm]	mm						
gascarAmbodifotoria35993834445744543213442811881098513128528Andapa2043363339297181758410610267609827129Antalaha21512602462672811501621481321047611421121Antisiraha21512602462672811501621481321047611421121Antisiraha21512032411875688675112129Antsirahe144220320617444272019172434131237210Petroba153930221842561131735109172434131237210Majurga15594663702825783123<12142424243240Majurga15694663702825783123<1212210242424243240Majurga15694663702825783123<1222677212434110229Majurga1569466370 <t< th=""><th>country</th><th>site</th><th>annual</th><th>jan</th><th>feb</th><th>mar</th><th>apr</th><th></th><th>jun</th><th>luį</th><th></th><th>sep</th><th>oct</th><th>nov</th><th>dec</th><th>record in years</th><th>literature</th></t<>	country	site	annual	jan	feb	mar	apr		jun	luį		sep	oct	nov	dec	record in years	literature
Andapa 2043 363 339 297 181 75 84 106 102 67 60 98 271 27 Antalaha 2151 260 246 267 281 150 162 148 132 104 76 114 211 2 Antisirabe 1432 293 241 218 77 31 13 17 15 24 77 158 268 26 3 3 97 202 293 291 293 206 17 31 13 17 15 24 77 18 7 3 17 3 17 5 11 27 50 19 17 5 11 27 50 19 7 5 11 27 50 13 17 15 24 13 123 237 13 131 17 15 24 13 131 231 <	Madagascar	1	3599	383	444	574	454	321	344	281	188	109	85	131	285	ç.	Griffiths (1972)
Antalaha 2151 260 246 267 281 150 162 148 132 104 76 114 211 23 Antisiraman 914 276 211 187 56 8 6 7 5 11 28 111 2 Antisiraman 914 276 211 187 56 8 8 7 5 11 28 111 23 Betroka 847 208 134 95 27 12 11 7 6 15 33 97 202 29 24 44 27 20 19 17 5 11 23 20 20 19 17 5 11 23 20 20 19 17 5 11 23 20 20 19 17 5 11 23 11 23 20 20 20 20 20 20 20 </td <td>;</td> <td></td> <td>2043</td> <td>363</td> <td>339</td> <td>297</td> <td>181</td> <td>75</td> <td>84</td> <td>106</td> <td>102</td> <td>67</td> <td>60</td> <td>98</td> <td>271</td> <td>¢.</td> <td>:</td>	;		2043	363	339	297	181	75	84	106	102	67	60	98	271	¢.	:
Antisirana914276211187568867511281112Antsirabe1432293241218773113171524771582682Betroka84720813495271211761533972022Fianarantsoa1224291206174442720191724341312372Fort Dauphin1539202184236113117135109946173911242Majunga1569466370282578312324102432Manujary2795398370498245195230158136102432Manujary2795398370498245195230158136102432Morondeva45412313459577212422851924Morondava7452881415830255230158130701732102Morondava7452881415844449176373202Morondava745281141 <td>;</td> <td>Antalaha</td> <td>2151</td> <td>260</td> <td>246</td> <td>267</td> <td>281</td> <td>150</td> <td>162</td> <td>148</td> <td>132</td> <td>104</td> <td>76</td> <td>114</td> <td>211</td> <td>¢.</td> <td>: -</td>	;	Antalaha	2151	260	246	267	281	150	162	148	132	104	76	114	211	¢.	: -
Antsirabe 1432 293 241 218 77 31 13 17 15 24 77 158 268 27 Betroka 847 208 134 95 27 12 11 7 5 11 28 111 28 7 7 5 112 281 111 28 111 28 111 28 111 28 111 28 111 28 111 28 111 28 111 28 117 28 29 117 211 28 111 28 111 28 111 28 111 28 111 28 91 291	;	Antisiranana	914	276	211	187	56	×	×	9	2	2	Ξ	28	111	ç٠	*4
Betroka 847 208 134 95 27 12 11 7 6 15 33 97 202 29 Diego-Suarez 916 277 211 187 56 8 8 7 7 5 11 28 111 Fianarantsoa 1224 291 206 174 44 27 20 19 17 54 34 131 237 2 Fort Dauphin 1539 202 184 236 113 117 135 109 94 61 73 91 244 2 Mainifrano 999 302 220 158 32 9 4 4 4 9 17 63 177 2 Mannjary 2795 398 370 498 245 195 230 158 136 013 79 173 210 243 Morondava 745 228 209 117 13 7 6 1 2 7 9 177 23 Morondava 745 228 1017 13 7 6 1 2 7 9 177 29 Morondava 3525 420 411 58 40 49 54 235 210 27 Morondava 3525 420 411 58 40 49 56 184 57 Morondava 3525 420 411		Antsirabe	1432	293	241	218	<i>LL</i>	31	13	17	15	24	LL	158	268	ç.	Griffiths (1972)
Diego-Suarez916 277 211187568877511281112Fianarantsoa1224291206174442720191724341312372Fort Dauphin1539202184236113117135109946173911242Maintirano999302220158329444917631772Mannjary27953983704982451952301581361002432Moronbee4541231345957721232102432Morondava745228209117137612791732102Morondava745228209117137612791732102Nossi-Be21934644252871415849334049961842592Tamatave352542044153300257208134871842592Tamatave352542044155231147169914491542922Tamatave3525420 </td <td>3</td> <td>Betroka</td> <td>847</td> <td>208</td> <td>134</td> <td>95</td> <td>27</td> <td>12</td> <td>Ξ</td> <td>7</td> <td>9</td> <td>15</td> <td>33</td> <td>76</td> <td>202</td> <td>÷</td> <td>:</td>	3	Betroka	847	208	134	95	27	12	Ξ	7	9	15	33	76	202	÷	:
Fianarantsoa12242912061744427201917243413123723Fort Dauphin15392021842361131171351099461739112424Maintirano999302220158329444917631772Mainanjary1569466370282578312332112432Mananjary2795398370498245195230158136103791732102Morondew454123134595772123241102432Morondava74522820911713761279172192Nossi-Be2193464425287141584933404996189362Tamatave3525420411584030257208134871842592Tamatave3525420441528404303300257208134871842592Tamatave352542044152840430330225726817311067Tulea		Diego-Suarez	916		211	187	56	8	8	L	2	S	Ξ	28	Ξ	ċ	; ;
Fort Dauphin15392021842361131171351099461739112423Maintirano999302220158329444917631772Mainnjary15694663702825783123241002432Mannjary2795398370498245195230158136103791732102Morondewa74522820911713761279171292Morondava74522820911713761279171292Nossi-Be21934644252871415849334049961893622Tamatave352542044153300257208134871842592Tamatave352542044158409914491542922Tamatave3525420441528404303300257208134871842592Tamatave3525420441528404303300257208134871842592Tulear342	;	Fianarantsoa	1224	291	206	174	4	27	20	19	17	24	6	131	237	ç٠	:
Maintirano99930222015832944917631772Mainnjary1569466370282578312324102432Mannjary2795398370498245195230158136103791732102Morondera45412313459577215422852Morondava74522820911713761279171292Nossi-Be21934644252871415849334049961893622Tannarive136030523522147169991449542592Tannarive1360305235221471699914491542922Tulear34271714271814815452612Tulear329363393456386296284285203135951422612Tulear329363393456386296284285203135951422612Tulear51370	;	Fort Dauphin	1539	202	184	236	113	117	135	109	94	61	73	16	124	ć	;
Majunga156946637028257831232411024324Mananjary2795398370498245195230158136103791732102Morondewa7452282091171376127917219Morondava74522820911713761279171292Nossi-Be21934644252871415849334049961893622Tamatave3525420441528404303300257208134871842592Tamatave3525420441528404303300257208134871842592Tamatave352542041753300257208134871842592Tulear34271714271811431062Tulear3299363393456386296284285203135951422612Tulear3299363393456386296284285203135951422612Tulear5137071<	;	Maintirano	666	302	220	158	32	6	4	4	4	6	17	63	177	¢.	
Mananjary2795398370498245195230158136103791732102Morondewa 454 12313459577215422857Morondava 745 22820911713761279171292Nossi-Be 2193 4644252871415849334049961893622Tamatave 3525 420441528404303300257208134871842592Tamatave 3525 420441528404303300257208134871842592Tamatave 3525 420441528404303300257208134871842592Tamatave 3525 4204471699914491542922Tulear 342 71714271811431062Tulear 3299 3633934563862962842852011712106Tulear 3299 3633934563862962842852011434572Tulear 513 70715	;	Majunga	1569	466	370	282	57	×	ŝ	-	0	ŝ	24	110	243	¢.	;
Morombe 454 123 134 59 5 7 2 1 5 4 22 85 $?$ Morondava 745 228 209 117 13 7 6 1 2 7 9 17 129 $?$ Morondava 745 228 209 117 13 7 6 1 2 7 9 17 129 $?$ Nossi-Be 2193 464 425 287 141 58 404 303 300 257 208 134 87 184 259 $?$ Tananarive 1360 305 235 221 477 16 9 9 9 14 49 154 292 $?$ Tananarive 1360 305 235 221 477 16 9 9 144 49 154 292 $?$ Tulear 342 71 71 42 71 18 11 4 3 106 $?$ Tulear 3299 363 393 456 386 296 284 285 203 135 95 142 261 Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 27 Toleary 356 89 73 30 12 16 12 5 3 10 15 27 <td< td=""><td>;</td><td>Mananjary</td><td>2795</td><td></td><td>370</td><td>498</td><td>245</td><td>195</td><td>230</td><td>158</td><td>136</td><td>103</td><td><i>6L</i></td><td>173</td><td>210</td><td>ć</td><td>;</td></td<>	;	Mananjary	2795		370	498	245	195	230	158	136	103	<i>6L</i>	173	210	ć	;
Morondava74522820911713761279171292Nossi-Be21934644252871415849334049961893622Tamatave3525420441528404303300257208134871842592Tamanarive1360305235221471699914491542922Tsihombe49178906019243114815331062Tulear3427171427181143101434572Tolagnaro1619176222219157159147103937471811172Tolagnaro1619176222219157159147103937471811172Toleary35689733912161253101527552Toleary513707159371841246881782	;;	Morombe	454	123	134	59	2	٢	Г	с і	-	Ś	4	52	85	¢.	;
Nossi-Be 2193 464 425 287 141 58 49 33 40 49 96 189 362 ?? Tamatave 3525 420 441 528 404 303 300 257 208 134 87 184 259 ?? Tamatave 3525 420 441 528 404 303 300 257 208 134 87 184 259 ?? Tainanarive 1360 305 235 221 47 16 9 9 14 49 154 292 ?? ?? 292 ?? <td< td=""><td>:</td><td>Morondava</td><td>745</td><td></td><td>209</td><td>117</td><td>13</td><td>Г</td><td>9</td><td>-</td><td>0</td><td>L</td><td>6</td><td>17</td><td>129</td><td>ċ</td><td>;</td></td<>	:	Morondava	745		209	117	13	Г	9	-	0	L	6	17	129	ċ	;
Tamatave 3525 420 441 528 404 303 300 257 208 134 87 184 259 ?? Tananarive 1360 305 235 221 47 16 9 9 14 49 154 292 ?? Taihonbe 491 78 90 60 19 24 31 14 8 15 15 31 106 ? Tulear 342 71 71 42 7 18 11 4 3 10 14 34 57 ?? Taomasina 3299 363 456 386 296 284 285 203 135 95 142 261 ??	;	Nossi-Be	2193		425	287	141	58	49	33	40	49	96	189	362	ċ	· · ·
Tananarive 1360 305 235 221 47 16 9 9 14 49 154 292 ? Tsihombe 491 78 90 60 19 24 31 14 8 15 31 106 ? Tulear 342 71 71 42 7 18 11 4 3 10 14 34 57 ? Tulear 3299 363 393 456 386 296 284 285 203 135 95 142 261 ? Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?		Tamatave	3525		441	528	404	303	300	257	208	134	87	184	259	ċ	
Tsihombe 491 78 90 60 19 24 31 14 8 15 15 31 106 ? Tulear 342 71 71 42 7 18 11 4 3 10 14 34 57 ? Taomasina 3299 363 393 456 386 296 284 285 203 135 95 142 261 ? Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? ita Funchal 513 70 71 59 37 18 4 1 2 24 68 81 78 ?	:	Tananarive	1360		235	221	47	16	6	6	6	4	49	154	292	¢.	;
Tulear 342 71 71 42 7 18 11 4 3 10 14 34 57 ? Taomasina 3299 363 393 456 386 296 284 285 203 135 95 142 261 ? Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? iria<	:	Tsihombe	491	78	06	()9	19	24	31	14	×	15	15	31	106	÷.	; ;
Taomasina 3299 363 393 456 386 296 284 285 203 135 95 142 261 ? Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? teira<	:	Tulear	342		71	42	Γ	18	Ξ	4	ŝ	10	4	34	57	ç.	;
Tolagnaro 1619 176 222 219 157 159 147 103 93 74 71 81 117 ? Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? Funchal 513 70 71 59 37 18 4 1 2 24 68 81 78 ?		Taomasina	3299	. ,	393	456	386	296	284	285	203	135	95	142	261	¢.	;
Toleary 356 89 73 39 12 16 12 5 3 10 15 27 55 ? - Funchal 513 70 71 59 37 18 4 1 2 24 68 81 78 ? - -	:	Tolagnaro	1619		222	219	157	159	147	103	63	74	11	81	117	ç.	;,
Funchal 513 70 71 59 37 18 4 1 2 24 68 81 78 2	; ;	Toleary	356		73	39	2	16	<u>1</u>	ŝ	ŝ	01	5	27	55	÷.	;
	Madeira	Funchal	513		12	59	37	8	-+	-	61	24	68	8	78	ç ·	;

					rain volume and distribution [mm]	olume	and c	listrib	ution	mm						
country	site	annual	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	NOU	dec	record in vears	literature
Malawi	Blantvre	834	200	179	125	43	6	+	~	-	S	50	2	164	20	Griffiths (1972)
;	Karonga	1081	183	163	316	187	35	9	-	0		4	39	144	30	:
;	Lilongwe	845	208	207	132	37	ŝ	-	С	¢1	ŝ	ŝ	70	175	30	;
;;	Mlanje	1796	313	319	308	125	59	64	38	33	$\frac{28}{28}$	58	183	268	27	;;
	Mzimba	869	228	194	173	7	$\mathbf{c}_{\mathbf{i}}$	-	-	-	C1	Ś	58	163	30	;
1 3 1	Nkhotakota	1442	287	308	371	132	35	Ξ	9	сı	ŝ	5	58	224	30	;
:	Zomba	1367	298	270	246	72	61	13	9	8	×	24	120	283	30	;
Mali	Bougouni	1078	С	-	Ś	17	68	140	231	335	210	61	01	0	34	;
	Kayes	746	С	0	-	-	ដ	96	170	244	160	46	5	0	34	;
ŗ,	Mopti	543	Ο	0	-	ŝ,	53	56	147	198	94	18		0	34	;'
Marocco	Adrar	18	0		0	0	-	0		-	-	vr,	ŝ	-	15	;
, ; ,	Agadir	224	48	32	54	16	ŝ	-	'	C	9	51	29	4	ç.	*4
·	Bouarfa	181	Ξ	13	51	61	1	5	-	×	5	24	25	21	13	: .
;	Casablanca	511	80	68	68	37	5	ŝ	1		с,	25	LL	125	ç٠	*4
	Ft. Flatters	29	2	ŝ	2	4	-	-	0	0		-	5	4	28	Griffiths (1972)
; ;	Marakesh	235	24	27	39	26	16	6	0	ŝ	Ξ	20	35	21	34	;
· : .	Melilla	451	84	56	66	47	29	9	-	-	18	50	47	46	ċ	*4
· · ·	Mogador	286	39	37	33	$^{-5}$	11	4	С	С	Ś	25	54	52	24	:'
:	Safi	327	44	35	40	$^{24}_{24}$	13	ŝ	0	Ο	9	40	56	$\frac{6}{2}$	24	:
· . ,	Tanger	887	118	102	112	85	39	15	-	<u>()</u>	25	108	136	144	ċ	+*
	Tanger	895	114	901	120	06	42	15			53	66	147	137	¢.	:'
:'	Tidjikja	147	С	7	-	C	Γ.	15	23	53	52	01	Ś		47	Griffiths (1972)
;	Tin Zaouaten	67	С	-		C	-	-	C	37	26	c	¢	0	64	;
	Tindouf	33	0	0	6	C	C	0	-	Ξ	2	4	-	ς.	32	;
':'	V. Cisneros	80	-			-	r.	С	-	vr,	35	CI	v,	ŝ	LL	;
Mauritania	Nouadhibou	92	CI		-	сı	С	-	0	r,	9	9	¢,	CI	÷.	기 ※

					rain v	olume	and d	listrib	rain volume and distribution [mm]	mm						
country	site	annual	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	record	literature
															in years	
Mauritius	Port Louis	1286	216	198	221	127	79	66	58	64	35	41	46	117	¢.	*4
Mocambique	Beira	1429	265	225	244	105	58	42	37	30	27	29	133	234	30	
;	Fingoe	1062	244	259	168	35	4	×	5	4	-	×	94	232	30	;
	Inhambane	918	134	146	107	71	57	63	45	30	31	29	80	125	ċ	*4
	Loreno Marques	769	130	124	797	64	28	27	13	13	38	46	86	103	30	Griffiths (1972)
;	Maputo	769	130	124	97	64	28	27	13	13	38	46	86	103	ç.	₽* *
;	Mossuril	838	214	205	146	102	24	37	18	15	6	9	28	34	30	Griffiths (1972)
:	Nova Freixo	890	246	205	146	25	7	0	-	0	5	15	50	186	30	;
	Pafuri	379	06	68	39	19	4	×	-	С	×	14	49	79	15	;
	Panda	694	116	136	74	46	34	25	61	12	26	31	67	108	30	
:	Tete	604	145	167	81	13	0	4	~1	7	0	4	52	130	20	; ;
Namibia	Keetmanshoop	147	22	30	35	13	5	0	-	-	7	5	14	17	30	;
	Swakopmund	17	0	ŝ	4	0	-	0	0	-	-	_	-	-	¢.	*4
;;	Tsumeb	553	119	139	79	40	9	0	0	0	-	19	53	76	30	Griffiths (1972)
	Windhoek	370	77	73	81	38	9	-	-	0		12	33	47	30	; ;
Niger	Niamey	584	0	0	0	Ζ	36	87	138	206	88	21	-	0	37	;
;	Zinder	529	0	0	¢	-	23	48	160	218	69	10	0	0	19	۲. ۱
Nigeria	Agbor	1887	15	41	117	165	213	269	272	183	328	218	53	13	46	: .
;	Ahuji	1246	0	сı	30	86	135	168	234	232	226	102	23	8	15	; ' '
: : :	Bida	1173	5	5	32	66	147	180	161	201	239	66	×	0	25	; -
:	Brass	3437	76	104	165	251	411	665	211	297	528	432	206	16	26	;
- : -	Calabar	3076	38	76	157	218	312	412	455	419	422	328	191	48	57	Suchel (1972)
;-	Dashen	1172	0	4	31	74	136	201	207	141	232	134	6	ς,	×	
:-	Donga	1398	4	Ŷ,	31	93	197	236	172	164	268	211	16	-	10	; ;
- : -	Gembu	1825	Ś	38	138	159	220	227	245	186	274	232	95	9	01	;
	Kaduna	1328	0	51	15	69	142	216	224	279	292	2	ŝ	0	45	Griffiths (1972)

					rain	volum	e and	rain volume and distribution [mm]	ution	[mm]						
country	site	annual	jan	feb	mar	apr	may	jun	juį	aug	sep	oct	nov	dec	record in years	literature
Nigeria	Kafinsoli	829	0	0	0	~	56	70	206	287	145	15	0	15	26	
	Katisina	741	0	0	0	5	56	84	185	274	127	10	0	0	37	:
;	Lagos	1831	28	45	102	150	269	458	279	63	140	204	68	25	ċ	; ,
: -	Lupwe	1730	6	4	99	141	249	279	149	130	305	339	46	ŝ	1	Suchel (1972)
	Maigana	1134	0	<u>(</u> 1	10	38	130	150	218	335	213	38	0	0	35	Griffiths (1972)
;	Mbagbera	1786	15	20	86	117	251	282	147	182	315	305	58	×	15	Suchel (1972)
;	Ndian	6202	119	142	290	452	513	864	955	947	823	584	353	091	01	Griffiths (1972)
;	Okene	1274	7	18	71	107	163	188	165	170	190	157	18	20	21	; ;
;	Oleh	2892	30	64	157	244	338	391	411	302	513	335	89	18	10	; ;
:	Ouro-Boki	LLL	0	0	5	45	72	133	133	168	167	54	0	0	7	Suchel (1972)
	Serti	1815	-	4	50	95	161	298	266	258	309	267	67	Ξ	9	; * .
;	War-War	1738	10	25	127	164	171	216	212	198	294	230	12	20	10	:
;	Yola	166	0	0	×	48	125	157	173	196	198	81	5	0	35	;
Sao Tom	Sao Tom	885	81	84	131	122	113	19	0	-	17	110	66	108	¢.	44
Senegal	Dakar	540	0	0	0	0	_	17	88	254	132	38	C 1	×	32	Griffiths (1972)
5	Kaolack	875	0	0	0	_	8	61	165	307	268	63	C 1	0	35	; '
;	St. Louis	388	0	5	0	-	-	12	55	170	Ξ	28	2	0	35	;
;	Tambacounda		0	0	0	_	20	130	172	257	224	12	-	0	35	:
; ;	Ziguinchor	-	0	-	0	0	Ξ	143	407	558	338	159	×	0	30	;
Sierra Leone	_	2524	01	36	101	152	259	287	297	371	416	336	203	56	22	- ;,
;	Freetown	4433	8	9	28	68	214	522	1190	1078	800	333	148	38	30	;

					rain	/olum	e and	rain volume and distribution [mm	ution	[mm]						
country	site	annual	jan	feb	mar	apr	may jun	nnį	luį	aug	sep	oct	NOU	dec	record	literature
			,												in years	
Somalia	Bender Cassim	18	C	0	-	0	~	C	0	0	0	<u>(</u> 1	2	ŝ	÷·	;
3	Berbera	52	×	С	ŝ	<u>-</u>	×	-	-	CI	-	()	ŝ	\$	çι	;
;	Chisimaio	347	-		5	33	56	96	52	17	13	20	7	4	÷·	* *
;	Dijbouti	129	01	13	25	12	ŝ		C 1	×	×	01	5	13	÷·	Griffiths (1972)
;	Erigavo	434	18	13	33	38	81	63	10	4	114	×	13	2	÷·	;
:	Galcaio	149	0	er,	-	24	60	0	0	2	-	4	4	-	¢.	;
;	Hargeisa	416	ŝ	×	25	61	61	58	42	81	58	01	×	-	÷٠	;
;	Lugh Ferrandi	310	C1	4	28	113	40	-	с,	C	-	47	56	15	¢.	:
;	Mogadischu	399	-	0	6	58	56	82	58	40	33	27	36	6	ċ.	₹ *
;	Obbia	661	6	C 1	26	21	46	'	0	0	-	24	49	21	¢.	:
;	Randa	271	18	4	0	46	9	9	53	32	31	12	30	61	ċ	Griffiths (1972)
Soudan	Juba	982	ŝ	01	43	107	157	116	136	154	105	101	35	13	30	Griffiths (1972)
:	Malakal	785	0	0	ς,	24	95	115	153	167	144	LL	9	-	30	:
;,	Port Sudan	112	4	-	-	-	2	-	6	ŝ	-	12	52	25	¢.	
;	Raea	1146		-	15	56	150	165	223	254	192	78	10	-	¢.	;
;	Roseires	776	0	0	-	Ξ	58	126	166	221	152	36	ŝ	0	30	;
;	Torit	366	ŝ	21	46	102	132	122	157	142	113	66	4	15	c.	÷
; ;	Wau	1145	0	4	20	69	132	170	661	234	671	130	x	0	30	: ,
;	Yubo	1451	ŝ	53	63	102	187	220	169	212	234	170	51	15	÷٠	:
South Africa			-	-	9	4	ŝ	с,	×	ς,	4	c 1	сı	-	÷	ষ *
;		506	5	×	17	47	84	828	85	71	4	29	17	Ξ	30	Griffiths (1972)
:	Durban	1003	118	128	113	16	59	36	26	39	63	85	121	124	÷·	+
;	East London	860	69	78	66	69	48	35	32	4	79	Ξ	93	87	÷·	:
:	Estcourt	725	108	115	89	47	ĉ	7	Ľ,	15	3()	63	98	117	30	Griffiths (1972)
:	Kaap Agulhas	498	20	5	33	7	56	57	58	57	5	43	30	35	÷٠	। *
;	Messina	340	78	55	9	15	+	+	m,	-	~	5	갂	20	30	Griffiths (1972)

					rain v	olume	rain volume and distribution [mm	listrib	ltion	mm						
country	site	annual	jan	feb	mar	apr	may	iun	luį	aug	sep	oct	VOU	dec	record in years	literature
South Africa	South Africa Port Elizabeth	632	37	33	48	4	65	58	56	59	89	61	19	4	÷.	*4
Swaziland	Big Bend	579	94	74	62	37	30	12	10	1	30	52	81	85	20	Swaziland
	þ															(1990)
; ;	Havelock	1340	208	255	177	96	43	54	26	36	79	152	9	238	20	;
;	Homestead	676	121	Ξ	81	40	18	12	12	2	30	54	16	94	20	;;
;	Kubuta	838	131	119	85	57	24	5	13	19	45	85	120	125	20	;
;	Lavumisa	566	06	78	55	41	54	14	10	15	32	54	72	81	20	;
;	Matsapha	156	145	140	106	65	18	8	12	5	56	108	132	117	20	; .
	Mbabane	1398	250	214	171	78	洗	19	22	30	64	129	177	210	20	:
	Nhlangano	801	131	116	95	53	<u>.</u> ,	15	4	17	40	72	110	117	20	:
Tanzania	Daressalaam	1179	71	64	120	280	303	35	33	25	29	49	79	16	70	Griffiths (1972)
:	Kigoma	779	134	118	155	151	51	9	0	۳,	15	61	130	151	29	;
3	Lindi	897	145	117	170	173	38	10	×	Ś	13	15	53	150	¢.	*4
;	Mbeya	883	661	165	161	116	17	-	-	-	٣,	15	52	152	31	Griffiths (1972)
;	Morogoro	892	94	104	167	208	96	27	15	10	17	27	54	73	57	:
;	Mtwara	1159	218	151	165	197	51	Ξ	15	11	65	24	33	218	13	:
:	Tabora	892	132	129	166	134	27	2	0	-	7	17	103	174	69	;
:	Wete/ Pemba	1964	63	50	178	413	486	147	73	45	3	104	223	151	¢.	₹.*
Tunisia	Djerba	207	28	61	22	Ξ	×	-	С		~1	34	43	27	50	Griffiths (1972)
:	Bone	787	143	105	73	57	37	15	٣,	2	Iε	75	108	133	¢٠	₽*
*	Gabes	175	22	17	21	01	6	-	0	\sim	4	30	34	15	÷.	;
;	Susa	327	43	34	30	22	18	6	-	s,	50	1 3	37	38	÷٠	;
;	Tunis	415	57	40	4	37	33		m,	-+	27	4	50	62	÷.	

					rain v	olume	and d	rain volume and distribution [mm]	ution	mm						
country	site	annual	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	NON	dec	record in veare	literature
	Eastships.	1505	1001	96		780	757	08	65	0	87	108	146	126	6 C	Griffiths (1972)
Uganua		0001	8	8				0,1	221		5	271	2			
;	Gulu	1470	12	43	89	5/1	7/1	148	001	721	171	60	16	4	70	1
;,	Kabale	986	61	16	114	136	92	26	20	55	95	98	107	16	45	;
Zaire	Bambesa	1782	34	73	135	199	201	152	184	205	209	220	128	42	30	;
1	Bongabo	1710	38	63	135	167	189	180	186	250	207	109	130	56	20	; '
;	Eala	1749	107	125	144	155	149	115	80	139	190	203	201	141	30	; ',
;	Gandajika	1395	157	131	181	174	51	4	9	35	100	139	200	217	30	; ' '
3 - 3	Kamina	1343	201	193	202	119	18	-	—	5	38	121	191	253	20	÷ ¦
;	Kinshasa	1378	128	139	181	209	134	5	—	4	33	137	236	171	30	; '
;	Lubumbashi	1244	256	264	210	53	ŝ	0	0	0	e	27	166	262	30	: '
;	Luki	1136	130	152	171	194	74	-	0	7	11	54	197	150	30	;
***	Luluabourg	1572	128	123	204	177	89	16	17	50	118	165	238	247	20	÷ .
;	Nioka	1304	25	63	100	137	124	601	120	175	183	131	85	52	30	;
;	Santo Antonio	1872	113	105	186	233	229	89	21	36	146	398	174	142	¢.	±*
;	Tshibinda	1833	165	175	195	215	164	56	34	57	145	214	201	212	30	Griffiths (1972)
Zaire	Uele	1787	34	73	135	661	201	152	184	205	209	220	128	47	30	
;	Yangambi	1828	85	66	148	150	177	126	146	170	180	241	180	126	30	÷.
Zambia	Chipata	1020	256	236	164	45	5	-	0	-	-	6	94	208	30	1 1
- : -	Kasama	1245	267	251	259	69	×	0	0	-	-	17	135	237	30	:
:	Kasempa	1139	273	223	161	35	ŝ	0	0	0	ŝ	34	141	266	30	÷'
;	Livingstone	<i>611</i>	186	175	101	28	5	0	0	0	3	26	92	164	30	÷ -
;	Lusaka	837	218	961	106	21	4	0	0	0	0	15	16	186	30	;
: -	Mongu	972	217	211	145	37	-	0	0	0	0	35	102	222	30	:
;	Mwinilunga	1342	225	221	227	95	8	-	0	-	15	92	961	261	30	;,
:	Ndola	1169	289	252	184	39	Ś	0	0	-	-	61	130	249	30	; ,
	Beitbridge	338	85	51	40	1	4	5	C1	-		20	4	5	30	;

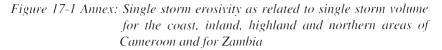
					rain vi	ołume	rain volume and distribution [mm]	stribut	ion [n	[m							
country	site	annual	jan	feb	mar	apr	jan feb mar apr may jun jul aug sep	i, I	ul a	ng Se	ð d	ep oct ne	nov dec	sc reco in y	record in years	literature	
Zimbabwe	imbabwe Bulawayo	588	134	112	65	21	588 134 112 65 21 9 3 0 1 5 25 89 124	3	0	-	s	25	89 1	24	30	- :: -	
;	Harare	867	213	173	101	39	Ξ	5	-	1 3 5 30 100 186	5	30	8	86	30	;	
;	Umtali	756	171	134	66	26	756 171 134 99 26 10 9	6	7	7 11 10 27 91 161	10	27	91 1		30		
* mean an	*1 mean annial rain value 1982–1991: 1074 mm	1982-1991	. 1024	mm													

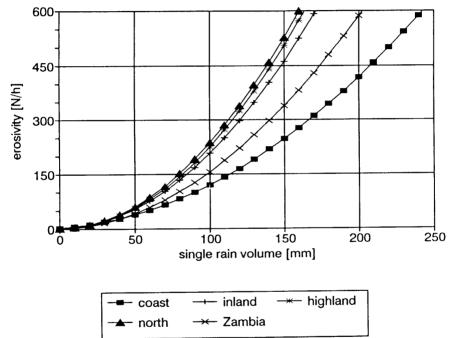
mean annual rain volume 1982–1991: 1024 mm mean annual rain volume 1982–1991: 1042 mm

maxima - ~ ~ ~ *

Bundesamt für Seeschifffahrt und Hydrographie (1991 a and b; 1992)

Annex 1.7 Estimation of the erosivity of the 10 year storm $(EI_{30}/10)$


Data for the $EI_{30}/10$ will be deficient in many cases. For some areas close correlations exist between single storm volume (P_i [mm]) and single storm erosivity (EI_{30i} [N/h]). From these correlations an estimate of the $EI_{30}/10$ can be made if the volume of the 10 year storm is known (c.f. Figure 75-2). However, the regressions in Figure 17-1Annex show that there are rather large differences between climatic zones which recommend a cautious use of such regressions. The regressions in Figure 17-1Annex are mean relationships of several regressions from Cameroon (Bresch, 1993) and Zambia (Pauwelyn et al., 1988):


coast	(Cameroon) Douala:	$EI_{30i} = (1.45 + 0.095 * P_i)2, r^2 = 0.75, n = 830$
inland	(Cameroon) Yoko: Batouri:	$EI_{30i} = (0.14 + 0.139*P_i)^2$, $r^2 = 0.80$, $n = 352$ $EI_{30i} = (0.37 + 0.133*P_i)^2$, $r^2 = 0.74$, $n = 424$
	Yaoundé:	$EI_{30i} = (0.07 + 0.153 * P_i)^2$, $r^2 = 0.81$, $n = 553$
highland	d (Cameroon)	
north	Bamenda: Nkoundja: (Cameroon)	$\begin{split} EI_{30i} &= (-0.08 + 0.152 * P_i)^2, r^2 = 0.82, n = 423 \\ EI_{30i} &= (0.02 + 0.148 * P_i)^2, r^2 = 0.73, n = 469 \end{split}$
	Maroua: Garoua: Poli:	$\begin{split} EI_{30i} &= (0.08 + 0.156^*P_i)^2, r^2 = 0.82, n = 252 \\ EI_{30i} &= (0.13 + 0.150^*P_i)^2, r^2 = 0.84, n = 132 \\ EI_{30i} &= (0.26 + 0.149^*P_i)^2, r^2 = 0.83, n = 175 \\ EI_{30i} &= (0.20 + 0.151^*P_i)^2, r^2 = 0.78, n = 573 \end{split}$

For Zambia a regression was given by Pauwelyn et al. (1988):

$$EI_{30i} = 0.0236 * P_i^{1.91}, r^2 = 0.71, n = 2348$$

The curve for the coast in Cameroon should give reasonable estimates for sites along the West African Coast with pronounced influence of the monsoon. The inland curve should be applicable for the Central African zone between 1000 and 1500 mm of rainfall. The regression for Northern Cameroon can probably extended to further areas of West Africa in the zone between 600 to 1000 mm.

Annex 2 Slope length and gradient

Figure 21-1 Annex: Water level for measurement of slope-length and gradient

The two scaled bars are placed on level ground and the hose is filled with water up to the zero mark on the bars. The stoppers need to be taken off the hose ends before starting the measurement. Make sure that no air bubbles are in the hose! If the hose diameter becomes too small, it is difficult to evacuate air bubbles from the hose. A small quantity of household detergent may help in this case. For the measurement, one person keeps one of the bars upright while a second person moves down-slope until the string between the bars is completely streched out. The distance between the two bars should now be 5 m. The vertical distance between the two bars can be read on the scale. If, for example, the vertical distance is 40 cm, the water in the hose of the lower bar should be beside the 20 cm mark whereas on the higher bar it is 20 cm below the zero mark. The gradient (s) can be calculated by:

$$s = \frac{0.2 \text{ m} * 2}{5 \text{ m}} * 100 = 8\%$$
 (48)

For practical purposes it is easier to double the scale on the bars (e.g. 0.2 m = 0.4 m) in order to receive the vertical distance right away.

	grac	lient	
degrees	[%]	degrees	[%]
1	2	36	73
2 3	3 5	37	75
	5	38	78
4	7	39	81
5	9	40	84
6	11	41	87
7	12	42	90
8	14	43	93
9	16	44	97
10	18	45	100
11	19	46	104
12	21	47	107
13	23	48	111
14	25	49	115
15	27	50	119
16	29	51	123
17	31	52	128
18	32	53	133
19	34	54	138
20	36	55	143
21	38	56	148
22	40	57	154
23	42	58	160
24	45	59	166
25	47	60	173
26	49	61	180
27	51	62	188
28	53	63	196
29	55	64	205
30	58	65	214
31	60	66	225
32	62	67	236
33	65	68	248
34	67	69	261
35	70	70	275

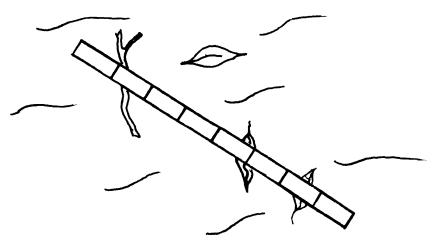
Annex 2.2 Conversion of slope gradient in degrees to percent

Annex 3 Cover and management factor

				date/	no. of d	lay in the y	ear				-
01-Jan	1	01-Mar	60	01-May	121	01-Jul	182	01-Sep	244	01-Nov	305
02-Jan	2	02-Mar	61	02-May	122	02-Jul	183	02-Sep	245	02-Nov	.306
03-Jan	3	03-Mar	62	03-May	123	03-Jul	184	03-Sep	246	03-Nov	307
04-Jan	4	04-Mar	63	04-May	124	04-Jul	185	04-Sep	247	04-Nov	308
05-Jan	5	05-Mar	64	05-May	125	05-Jul	186	05-Sep	248	05-Nov	309
06-Jan	6	06-Mar	65	06-May	126	06-Jul	187	06-Sep	249	06-Nov	310
07-Jan	7	07-Mar	66	07-May	127	07-Jul	188	07-Sep	250	07-Nov	311
08-Jan	8	08-Mar	67	08-May	128	08-Jul	189	08-Sep	251	08-Nov	312
09-Jan	9	09-Mar	68	09-May	129	09-Jul	190	()9-Sep	252	09-Nov	313
10-Jan	10	10-Mar	69	10-May	130	10-Jul	191	10-Sep	253	10-Nov	314
11-Jan		11-Mar	70	11-May	131	11-Jul	192	11-Sep	254	11-Nov	315
12-Jan	12	12-Mar	71	12-May	132	12-Jul	193	12-Sep	255	12-Nov	316
13-Jan	13	13-Mar	72	13-May	133	13-Jul	194	13-Sep	256	13-Nov	317
14-Jan	14	14-Mar	73	14-May	134	14-Jul	195	14-Sep	257	14-Nov	318
15-Jan	15	15-Mar	74	15-May	135	15-Jul	196	15-Sep	258	15-Nov	319
16-Jan	-16	16-Mar	75	16-May	136	16-Jul	197	16-Sep	259	16-Nov	320
17-Jan	17	17-Mar	- 76	17-May	137	17-Jul	198	17-Sep	260	17-Nov	321
18-Jan	18	18-Mar	77	18-May	1.38	18-Jul	199	18-Sep	261	18-Nov	322
19-Jan	19	19-Mar	78	19-May	139	19-Jul	200	19-Sep	262	19-Nov	323
20-Jan	20	20-Mar	79	20-May	-140	20-Jul	201	20-Sep	263	20-Nov	324
21-Jan	21 22	21-Mar	80	21-May	- 141	21-Jul	202	21-Sep	264	21-Nov	325
22-Jan	22	22-Mar	81	22-May	142	22-Jul	203	22-Sep	265	22-Nov	326
23-Jan	23	23-Mar	82	23-May	143	23-Jul	204	23-Sep	266	23-Nov	327
24-Jan	24	24-Mar	83	24-May	144	24-Jul	205	24-Sep	267	24-Nov	328
25-Jan	25	25-Mar	84	25-May	145	25-Jul	206	25-Sep	268	25-Nov	329
26-Jan	26	26-Mar	85	26-May	146	26-Jul	207	26-Sep	269	26-Nov	330
27-Jan	27	27-Mar	86	27-May	147	27-Jul	208	27-Sep	270	27-Nov	331
28-Jan	28	28-Mar	87	28-May	148	28-Jul	209	28-Sep	271	28-Nov	3.32
29-Jan	29	29-Mar	88	29-May	149	29-Jul	210	29-Sep	272	29-Nov	333
30-Jan	-30	30-Mar	89	30-May	150	30-Jul	211	30-Sep	273	30-Nov	334
31-Jan	31	31-Mar	90	31-May	151	31-Jul	212	01-Oct	274	01-Dec	335
01-Feb	32	01-Apr	- 91	01-Jun	152	01-Aug	213	02-Oct	275	02-Dec	336
02-Feb	.3.3	02-Apr	92	02-Jun	153	02-Aug	214	03-Oct	276	03-Dec	337
03-Feb	34	03-Apr	93	03-Jun	154	03-Aug	215	()4-Oct	277	04-Dec	338
04-Feb	35	04-Apr	94	04-Jun	155	04-Aug	216	()5-Oct	278	05-Dec	339
05-Feb	36	05-Apr	95	05-Jun	156	05-Aug	217	06-Oct	279	06-Dec	.340
06-Feb	37	06-Apr	96	06-Jun	157	06-Aug	218	07-Oct	280	07-Dec	.341
07-Feb	.38	07-Apr	97	07-Jun	158	07-Aug	219	()8-Oct	281	08-Dec	342
08-Feb	39	08-Apr	98	08-Jun	159	08-Aug	220	09-Oct	282	09-Dec	343
09-Feb	40	09-Apr	99	()9-Jun	160	09-Aug	221	10-Oct	283	10-Dec	344
10-Feb	41	10-Apr	100	10-Jun	161	10-Aug	222	11-Oct	284	11-Dec	345
11-Feb	42	11-Apr	101	11-Jun	162	11-Aug	223	12-Oct	285	12-Dec	346 347
12-Feb	43	12-Apr	102	12-Jun	163	12-Aug	224	13-Oct	286	13-Dec 14-Dec	348
13-Feb	44	13-Apr	103	13-Jun	164	13-Aug	225	14-Oct	287		349
14-Feb	45	14-Apr	104	14-Jun	165	14-Aug	226	15-Oct	288	15-Dec	350
15-Feb	46	15-Apr	105	15-Jun	166	15-Aug	227	16-Oct	289	16-Dec	
16-Feb	47	16-Apr	106	16-Jun	167	16-Aug	228	17-Oct	290	17-Dec	351
17-Feb	48	17-Apr	107	17-Jun	168	17-Aug	229	18-Oct	291	18-Dec	352 353
18-Feb	49	18-Apr	108	18-Jun	169	18-Aug	230	19-Oct	292	19-Dec	354
19-Feb	50	19-Apr	109	19-Jun	170	19-Aug	231	20-Oct	293	20-Dec	355
20-Feb	.51	20-Apr	110	20-Jun	171	20-Aug	232 233	21-Oct	294	21-Dec 22-Dec	356
21-Feb	52	21-Apr	111	21-Jun	172	21-Aug 22-Aug	234	22-Oct 23-Oct	295	22-Dec	357
22-Feb	53	22-Apr	112	22-Jun 23-Jun	17.5	22-Aug 23-Aug	235	23-Oct 24-Oct	290	23-Dec 24-Dec	358
23-Feb	54	23-Apr	113 114	23-Jun 24-Jun	174	23-Aug	230	24-Oct 25-Oct	298	25-Dec	359
24-Feb	55 56	24-Apr 25-Apr	114	24-Jun 25-Jun	176	24-Aug	237	26-Oct	299	26-Dec	360
25-Feb	50 57		115	26-Jun	177	26-Aug	238	27-Oct	300	27-Dec	361
26-Feb 27-Feb	58	26-Apr 27-Apr	117	27-Jun	178	27-Aug	239	28-Oct	301	28-Dec	362
27-Feb 28-Feb	59	27-Apr 28-Apr	118	28-Jun	179	28-Aug	240	29-Oct	302	29-Dec	363
20-100	.19	29-Apr	119	29-Jun	180	29-Aug	241	30-Oct	303	30-Dec	364
		30-Apr	120	30-Jun	181	30-Aug	242	31-Oct	304	31-Dec	365
			/			31-Aug	243				
								1			

Annex 3.1 Number of day in the year and corresponding date.

Annex 3.2 Field methods for the measurement of mulch cover and canopy cover

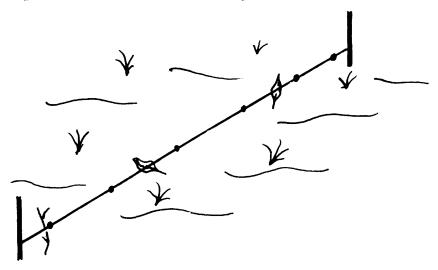

1. Mulch cover measurement by the meterstick method

Put a meterstick on the ground and count on one side all the cmmarks which are in contact with mulch material (Figure 32-1Annex). The mulch cover (MC) is given by:

$$MC (\%) \approx \frac{\text{number of cm marks in contact}}{\text{length of meterstick (cm)}} * 100$$
(49)

Example: 38 cm-marks are in contact with one side of a 2 m long meterstick. MC is 38/200 = 19%.

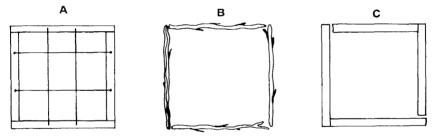
Figure 32-1 Annex: Mesurement of mulch cover by the meterstick method



This method is well suited for small plots. The number of measurements depends on the uniformness of the cover. In own measurements 12 replications with a 2 m long meterstick were taken on 500 m² plots equivalent to a random 24 m transsect. It is important that the stick is randomly placed in the plot. Random placement can be assured by throwing the meterstick into the plot.

2. Mulch cover measurement by the cord and knot method

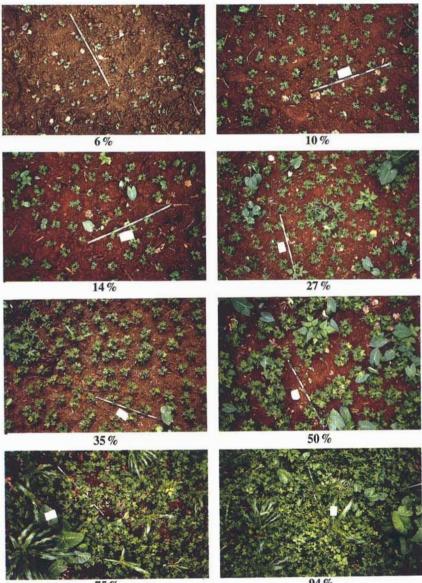
This method is similar to the meterstick method. Marks or knots are attached to a 10 to 20 m long cord which is streched out on a field (Figure 32-2Annex). The number of knots in contact with mulch material (*100) divided by the total number of knots on the cord gives the percent mulch cover.


Figure 32-2 Annex: Cord and knot method for cover measurement

3. Mulch and canopy cover measurement by visual estimation

Form a quadrat of $1 \times 1 \text{ m}$ using 4 wooden sticks of 1 m length or two foldable 2 m-sticks to mark out a 1 m² area in the field (Figure 32-3Annex). If the observed area is well delimitated, cover is easier to estimate than on an undefined area. The size of the area can be smaller than 1 m² but should not be larger because visual estimation becomes more difficult with increasing size of the area. Cover is estimated visually in the delimitated area. Calibration of the eye can be facilitated by the examples in Figure 32-4Annex. Estimations become also easier if wires are streched at regular distances on the wooden frame. Estimations are reasonably precise after some routine.

Figure 32-3 Annex: Marking out an area with different devices (a. wooden frame with wire-net, b. twigs, c. two 2 m-sticks)



4. Measurement of canopy and mulch cover by a sighting frame

This method was proposed by Elwell & Wendelaar (1977). Ten hollow pipes are attached to a frame (Figure 32-5Annex). By peering through one of the pipes a small area can be observed. Mulch or canopy cover in this area is either rated as 'yes' or 'no' or rated on a scale between 1 and 10. In the first case, the number of points observed with cover (= yes) divided by the number of all points observed gives the coverage.

Annex 3.2

Figure 32-4 Annex: Selected coverages for the calibration of the eye (the stick in the pictures is 1 m long)

75%

94%

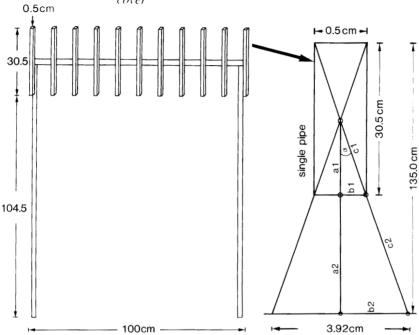
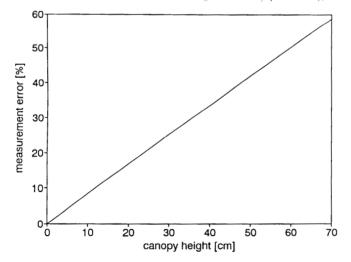
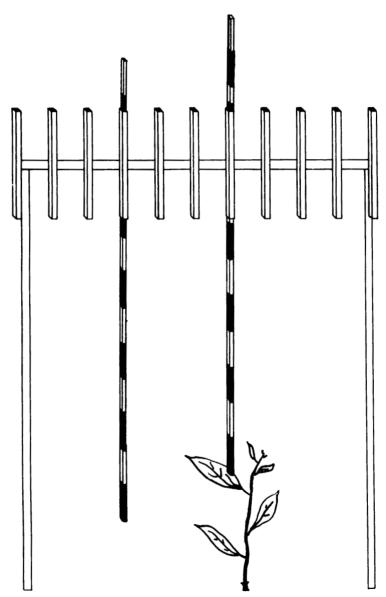
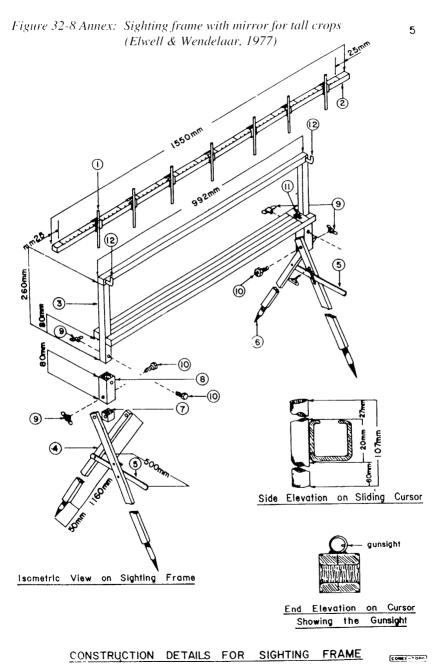
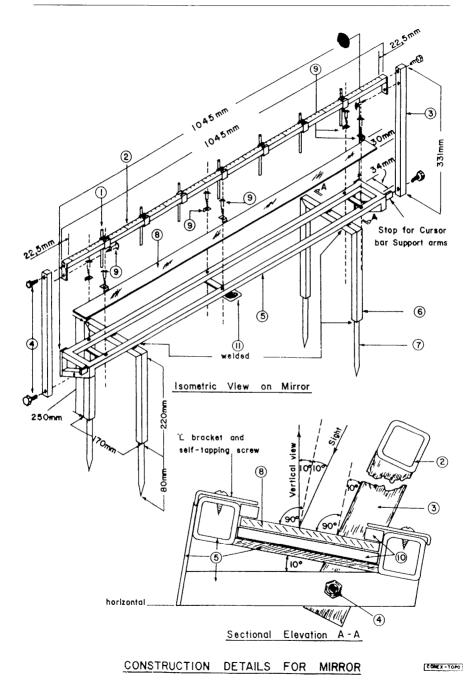



Figure 32-5 Annex: Sighting frame for measurement of canopy and mulch cover

Figure 32-6 Annex: Observation error as influenced by plant height


Figure 32-7 Annex: Modified sighting frame for errorless coverage and cover height measurements

In the second case the sum of ratings for all ten pipes gives the coverage for the 1 m transsect. 100 observations in a regular cropstand were precise within 2% coverage (Cackett, 1964) whereas 300 observations were necessary for a 5% accuracy in an irregular cropstand (Elwell & Gardner, 1975). Quansah et al. (1990) used an average of 5.4 observations/m². In own measurements 180 points on a 500 m² plot (0.3 observations/m²) proved adequate (Nill, 1993). This version of sighting frame can be used for mulch and during the first 2–4 weeks of plant growth while the plants are still small because the observation error increases rapidly with increasing plant height (Figure 32-6Annex).

A modified version of the sighting frame avoids this observation error by sliding a graduated stick through the pipes (Figure 32-7Annex). In this case the number of contacts of the stick with leaves or mulch are counted. This version allows at the same time to measure the mean canopy height above ground.

An alternative in tall crops is the use of a mirror on the sighting frame which allows an observation of the canopy cover outlined against the sky (Figure 32-8Annex). The sighting frames are easy and cheap to construct.

Annex 3.3 Growth curves for mono- and mixed crops

Growth curves for the following mono- and mix-crops are given for:

Bambara nut	Figure 33-1 Annex
canavalia	Figure 33-1 Annex
cassava	Figure 33-2 Annex
cotton	Figure 33-3 Annex
cowpea	Figure 33-1 Annex
groundnut	Figure 33-4 Annex
maize	Figure 33-5 Annex
maize/cassava mixcrop	Figure 33-2 Annex
pigeon pea	Figure 33-2 Annex
rice	Figure 33-5 Annex
sorghum	Figure 33-5 Annex
soya	Figure 33-4 Annex
sunflower	Figure 33-3 Annex
tea	Figure 33-6 Annex
tobacco	Figure 33-3 Annex

Figure 33-1 Annex: Canopy cover development of Bambara nut, canavalia and cowpea (Quansah et al., 1990)

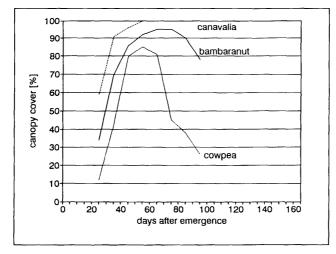


Figure 33-2 Annex: Canopy cover development of cassava, maize/cassava mixcrop and pigeon pea (Aina et al., 1979)

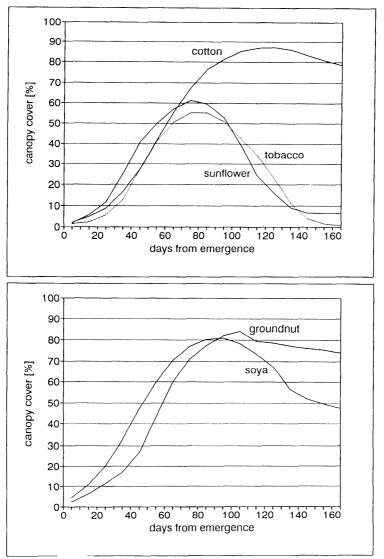


Figure 33-3 Annex: Mean canopy cover development of cotton (n = 45), sunflower (n = 4) and tobacco (n = 44) (Elwell, 1993)

Figure 33-4 Annex: Mean canopy cover development of groundnut (n = 7) and soya (n = 92) (Elwell, 1993)

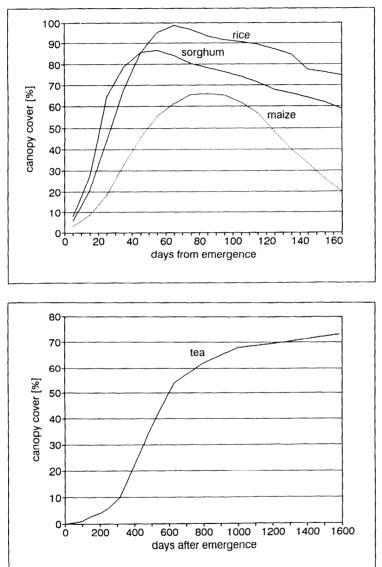


Figure 33-5 Annex: Mean canopy cover development of maize (n = 76), rice (n = 7) and sorghum (n = 8) (Elwell, 1993)

Figure 33-6 Annex: Canopy cover development for tea (Othieno, 1975)

Annex 3.4 Detailed C factors

no.	land-use	description	C factor		measure-	measure- country	location	literature
					ment			
					period			
			mean	mean extremes	[a]			
	fallows of							
_	forest	dense, secondary forest; 0.0002 1.8E-05 to	0.0002	1.8E-05 to	I	Ivory Coast	Adiopodoum	Ivory Coast Adiopodoum Roose (1975, p.
		mean of 3 plots		0.00035				30/31)
5	bush	well developed	0.004	-		Cameroon	Yaound	Yaound Nill (1993. p. 159)
e	grass	poorly developed	0.09	ı	-	:	Nachtigal	
		Imperata grass fallow						
4	;	savanna grass fallow in	0.01	1	ı	,	ı	Roose (1977, p. 69)
		good condition						
ŝ	** -	savanna grass fallow in	0.1	ı	ı	I	I	÷.
		poor condition (burned or						
		overgrazed)						

Table 34-1 Annex: Detailed C factors for forest, bush and grass vegetation

Annex 3.4 Detailed C factors

no.	land-use	description	C factor		measure-	country	location	literature
					ment neriod			
			mean	extremes	[8]			
9	crop	fallow with maize residues	0.09	1	1	Malaysia		Sulaiman et al. (1983)
	residues*3							
7	- : -	fallow with maize	0.01	,		; '	,	; .
		residues and mulch						
8	,	fallow with mung bean	0.25		r	;	ı	3,1
		residues						
6		fallow with groundnut	0.28		ı	;	ı	
		residues						
10	, -	fallow with cowpea	0.03	ı		;	ı	3
		residues						
	residual fallow effects*1	ow effects*1	ł					
=	bush fallow	bush fallow well developed; 1st year	0.8	0.78 to 0.81	1	Cameroon	Yaound	Nill (1993. p. 163)
		after clearing						
12		2nd years after clearing*2	0.9*2	ı	1	;	1	; ; 1
13	grass fallow	grass fallow Imperata grass; 1st year	0.4	0.33 to 0.49	-	י ג י	Nachtigal	:,
		after clearing						
14	;	2nd year after clearing*2	0.7		-	:	;	, r , r

Table 34-1 Annex, continue

ло.	no. land-use	description	C factor		measure-	country	location	literature
					ment period	\$		
			mean	extremes	[a]			
	cover and fodder crops	dder crops						
15	diverse	Ist year: early planting and good growth (elephant grass, Guatemala orass, Guinea	0.004	0.0007 to	0.014	I	Ivory Coast	Adiopodoum
		grass, Cynodon dactylon, Setaria)						
16	- 	lst year: late planting or slow growth (Crotalaria, Flemingia, Mimosa	0.29	0.16 to 0.70	1	; ; ;	, ; ,	:
		invisa. Digitaria umfolozi, Centrosema. Titonia, Stylosanthes)						
17	:	2. year: all	0.002	0.00036 to 0.0051	,	:	1	;
18	Cynodon	right after cutting. 60 -	0.0024	,	3	;		Roose (1975. p. 33)
16	aethiopicu Stylos-	80% canopy cover right after cutting. 42%	0.026	·	£	:	: .	-
	anthes	canopy cover						
	guyanensis							

Table 34-1 Annex, continue

цо.	no. land-use	description	C factor		measure- ment period	measure- country ment period	location	literature
			mean	mean extremes	[a]			
20	Panicum	right after cutting. 8 -	0.058	ı	3	, ; ;	:	1 5 1
	maximum	maximum 14% canopy cover						
51	Digitaria	slope 12%; planted 3	0.007	ı	ŝ	Brazil	Alagoinha	Leprun et al. (1986,
	decumbens	decumbens years old pasture (C =						p. 226)
		mean of 3 years)						
22	Bracharia	1st year	0.287	ı	,	Indonesia	ı	Abdurachman et al.
	decumbens							(1984)
23	;	fully established	0.002	ı	ı	;	I	- * -
24	;	planted pasture (C = mean	0.003		9	Brazil	Brasilia	Leprun et al. (1986,
		of six years); 5.5% slope						p. 228)

Table 34-1 Annex, continue

- Surprisingly, savanna fallow had higher residual effect which might be due to generally lower organic matter levels and slower turnover *
 - residual effects for 2nd year assumed as 50 % of the 1st year ξı &
- Only the crop residues are left in the field and the spontaneously growing vegetation after harvest

no.	no. land-use	description	C factor		measure-	country	location	literature
					period			
			mean	extremes	[a]			
_	monocrop	8% slope. Ist year: leaves placed around trunks: 2nd year: leaves placed on contour: spacing 5 x 3 m. Alternatively for a young	0.56	0.14 to 1.08	0	Burundi	Mashitsi	Rishirumuhirwa (1992, p. 90)
		plantation (1st year)						
5	;	as above but spacing 2 x 3 m	0.16	0.04 to 0.3	7	: .	:	:'
ŝ		as above but spacing 3 x 3 m	0.3	0.08 to 0.58	2	- - -	;	:
4	;	as above but spacing 4 x 3 m	0.42	0.1 to 0.83	7	:	;	:
ŝ	:	with mulch	0.00029	0.00029 to 0.00036	Ivory Coast	Adiopodoum	Adiopodoum Roose (1975, p. 30/31)	
9	1	as no. 3. spacing 3 x 3 m	0.0009	0 to 0.007	2	Burundi	:	, ,
~	:	pius comprete mutur cover	0.04	ı	,		ı	Lewis (1986 in: Young, 1989, p. 33)
×	intercropped with beans	with beans	0.1			1		
6	;	with sorghum	0.14	ı		-		· · ·

Table 34-2 Annex: Detailed C factors for banana

ġ	no. land-use	description	C	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
_	monocrop	density 45000 plants/ha;	0.44	ĸ	4 reps. 1 Nigeria	Nigeria	Owerri	Asoegwu &
		planted on contour; 1st vear (9% slope)			year			Obiefuna (1990, p. 240)
0	:	as above but density 60000 plants/ha	0.31		:	:		
~	;	as above but density 75000 plants/ha	0.24	,	:	:	:	-
4 8	:	1. year: on level ground	0.087	0.058 to 0.145	,	Ivory Coast	Adiopodoum	Ivory Coast Adiopodoum Roose (1975, p. 30/31)
5	:	1. year: on heaps	0.025	¢.	,	: -	;	:
e.5		2. year: on level ground	0.0015	0.0007 to 0.002	I	;	;	;
L	:	residues burned; on contour (as a function of		0.2 to 0.5	ï	ı	ı	Roose (1977, p. 69)
8	:	slope) as above but residues		0.1 to 0.3	,		ı	:
		incorporated						

Table 34-3 Annex: Detailed C factors for pineapple

no.	no. land-use	description	С	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
6		as above but residues as	0.01			ı	ı	; ,
		surface mulch			A soor I Miccario	Nicerio	Owarri	A commun &
10	intercrop	density 45000 plants/ha + 0.54	0.54		4 Icps, 1 vear	Mgclid	Owelli	Objefuna (1990, p.
		compea (20000 planeshing)						240)
Ξ	;	density 60000 plants/ha +	0.29		;	;	:	
		cowpea (20000 plants/ha)						
12		density 75000 plants/ha + 0.19	0.19	,	: '		:'	:,
		cowpea (20000 plants/ha)						
13		density 45000 plants/ha +	0.19		:	;	;	, ,
		egusi melon*1 (5000						
		plants/ha)						
14	;	density 60000 plants/ha + 0.16	0.16	,	: '	:	: .	;
		egusi melon (5000						
		plants/ha)						
15	;;;	density 75000 plants/ha + 0.13	0.13		;	;	:	;
		egusi melon (5000						
		plants/ha)						

Table 34-3 Annex, continue

	no. Jand-use	description	C	C factor	measure- ment	measure- country ment	location	literature
					period			
			mean	mean extremes [a]	[a]			
	subfactors							
16		increasing density by 15000 plants; calculated	0.75	0.71 to 0.78	-	1 2 1	; ,	:
		from densities above			-	:	:	:
17*.	3 intercropping	17*3 intercropping intercropping with cowpea (20000 plants/ha)	0.84	0.79 to 0.93 1	_	' : '	1	•
*	18*3 - " -	intercropping with egusi 0.5 melon*1 (5000 plants/ha)	0.5	0.44 to 0.53 1	_	:	' : 1	: :

Table 34-3 Annex, continue

ມ

there was a slight trend observable that the subfactor for intercropping increases with increasing pineapple density. The ratios in-10-12 are rather small values; however, it was not specified if the residues were kept within the field - %1 %

tercrop/monocrop were 0.77, 0.94 and 0.79 for cowpea intercropped with 45.000, 60.000 and 70.000 pineapple plants. With me-lon the ratios were 0.43, 0.52 and 0.54, respectively.

o.casavadescriptionC factormeasure-countrynentnentperiodnentnealmonocropping: 1st season C 0.56 0.72 to 0.39 1Nigeriaground $= 0.72$: 2nd season C 0.53 $-$ 4Rwanda $-\cdots$ spacing 1 x 1 m: planted on 0.53 $-$ 4Rwanda $-\cdots$ spacing 1 x 1 m: planted on 0.36 $ -$ 1 $-\cdots$ spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2 2.3 $-\cdots$ spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2 2.3 $-\cdots$ $-\cdots$ 0.25 $-\cdots$ $ -\cdots$ 1 year 0.25 $ -$									
meanperiodmeanextremes an levelmonocropping:ls season C0.560.72 to 0.391Nigeria a^{-1} $= 0.72$: 2nd season C = 0.39 0.53 $ 4$ Rwanda a^{-1} $= 0.72$: 2nd season C = 0.39 0.36 $ -$ Indonesia a^{-1} a^{-1} 0.36 $ -$ Indonesia a^{-1} a^{-1} 0.36 $ -$ Indonesia a^{-1} a^{-1} a^{-1} 0.36 $ a^{-1}$ a^{-1} a^{-1} a^{-1} a^{-1} $ a^{-1}$ a^{-1} a^{-1} a^{-1} a^{-1} a^{-1} $ a^{-1}$ a^{-1} a^{-1} a^{-1} a^{-1} a^{-1} $ a^{-1}$ a^{-1} a^{-1} a^{-1} a^{-1} a^{-1}	no.		description	C factor		measure-	country	location	literature
meanextremes[a]on levelmonocropping: 1st season C 0.56 0.72 to 0.39 1Nigeriaground $= 0.72$: 2nd season C = 0.39 0.53 $ +$ Rwanda $-\cdots$ spacing 1 x 1 m; planted on 0.53 $ +$ $+$ $-\cdots$ spacing 1 x 1 m; planted on 0.36 $ -\cdots$ spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbia $-\cdots$ $-\cdots$ 0.25 $-\cdots$ $ -\cdots$ 1 . year 0.25 $ -$						period			
on level monocropping: 1st season C 0.56 0.72 to 0.39 1 Nigeria ground = 0.72: 2nd season C = 0.39 - 4 Rwanda spacing 1 x 1 m: planted on 0.53 - 4 Rwanda level ground 0.36 - - 4 Rwanda spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2 Columbia spacing 1 x 1 m: planted on 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 - - ievel ground 0.12 0.09 to 0.14 2 in 2 - - ievel ground 0.12 0.09 to 0.14 - - - ievel ground 1 -				mean	extremes	[a]			
ground= $0.72.2$ rud season C = 0.53 -4Rwandaspacing 1 x 1 m: planted on 0.53 -4Rwandalevel ground 0.36 Indonesiaspacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbiaspacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbiaspacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2Columbia 0.25 1. year 0.25	-	on level	monocropping: 1st season C	0.56	0.72 to 0.39	-	Nigeria	Ibadan	Aina et al. (1979, p. 506)
level ground 0.36 - - Indonesia spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 Columbia level ground 0.12 0.09 to 0.14 2 in 2 Columbia ievel ground 0.12 0.09 to 0.14 2 in 2 Columbia 0.2.5 - - - - - - 1. year 0.2 to 0.8 - - - - -	5	ground	= 0.72 , zna season $C = 0.22$ spacing 1 x 1 m; planted on	0.53	,	4	Rwanda	Butare	Knig (1992, p. 174)
spacing 1 x 1 m; planted on 0.12 0.09 to 0.14 2 in 2 Columbia level ground sites with 23 0.25 - - 1. year 0.2 to 0.8 - -	ŝ	;	level ground	0.36		I	Indonesia	ı	Abdurachman et al. (1984)
	4	:	spacing 1 x 1 m; planted on level ground	0.12	0.09 to 0.14	2 in 2 sites with	Columbia	Santander de Quilichao and	
0.25						2-3 repetitions		Mondomo	
1. year 0.2 to 0.8	5	1 1	,	0.25	ı	ı	,	۲	Lewis (1986 in: Young, 1989)
	9	:	I. year	0.30	0.2 to 0.8	1	- Cameroon	- Nachtigal	Roose (1975, p. 40) Nill (1993)

Table 34-4 Annex: Detailed C factors for cassava

no.	cassava	description	C	C factor	measure- ment period	country	location	literature
			mean	extremes	[a]			
	mounds	l. year	0.23	0.16 to 0.67	I	Ivory Coast	Adiopodoum	Ivory Coast Adiopodoum Roose (1975, p. 30/31)
		2. year	0.015		,	;	; ;	
10	contour	planted on 4 out of 8 different Indonesian soil	0.64	ı	-	Indonesia	1	Keersebilck (1990, p. 560)
Ξ	along slope	types 1 plant/m . spacing 0.86 x 1.13 (C factor judged to low due to small rain volume in initial arrowth staces	0.08	1	-	USA/Hawaii Molokai	Molokai	El-Swaify et al. (1988, p. 9)
12	ridge	spacing 1 x 1 m; on contour ridges	0.021	0.012 to 0.03	:	:	1	;
	1 3 1	as above but ridges along slope	0.27	0.13 to 0.4	:	:	:	3
14	bufferstrips	1 m large grass strips on contour 8 to 10 m apart; cassava spaced 0.9 x 1 m: 7 to 20% slopes	0.05	0.01 to 0.08	:	:	:	

Table 34-4 Annex, continue

no.	cassava	description	C	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
15	notill	spacing 1 x 1 m; only tillage of planting holes; 7	0.015	0.015	1 5 1	1	- 1 \$ 1	
16	intercrop	to 20% stopes cassava intercropped with maize (75 x 25 cm) and cocoyam; plowed and harrowed: 19 3 15 ko/ha	0.08	0.109 to 0.023	m	Ghana	Kwadoso	Bonsu & Obeng (1979, p. 515)
7	3	NPK: 7.5% slope as above but 3% slope	0.066	×,	_	:	Eiura	
18	, ,	intercropped with maize; lst season $C = 0.43$; 2nd season $C = 0.05$	0.24	0.43 to 0.05	_	Nigeria	Ibadan	Aina et al. (1979)
61	:	intercopped with maize; residues incorporated; on 60 cm heaps oriented across 6% slope; distance between heap tops 0.7 x 1.4 m; 2 repetitions	0.007		_	: :	Alore	Sabel-Koschella (1988)

Table 34-4 Annex, continue

240

	1433414	ncertibiliti	ر	C factor	measure-	country	location	12
					ment	f minos	LOCATION	literature
					period			
			mean	extremes	[a]			
-	; ; ;	intercropping maize + rice	0.588	,		Indonesia		Abdurachman at al
		+ cassava						
- 12	- :: -	intercropped with soya	0.181		,	;		(1904)
	: .	with groundnut	0.195	,		:		, : ,
- 23		as no. 9 but intercropped	0.02	ı	_	USA/Hawaii Molobai	Molotai	El Cumiter et al 21000
		with stylosanthes and					INNUNAI	EI-SWally et al. (1988 - 05
_		Desmodium triflorum						p. y)
- 54		cassava on level ground;	0.17	0.15 to 0.19	:'	;	:	:
		spacing 1.7 x 0.6 m across						1
		slope; 3 rows of Phaseolus						
		or cowpea between cassava;						
		spacing 0.25 between rows						
25	;	intercropping of maize +	0.357	ı	-	Indonesia		A holimonic and a second se
		rice + cassava with residue						ADUUI ACTITIZATI ET AL.
		mulch						(1964)
26 ji	intercrop +	intercropped with rice +	0.079	ı		;		;
-	mulch	maize plus 6 t/ha of rice						T I
		straw mulch						

Table 34-4 Annex, continue

Table 34-4 Annex, continue

no.	cassava	description	Cf	C factor	measure-	country	location	literature
					ment			
					period			
			mean	mean extremes	[a]			
	subfactor							
27		subfactor for intercropping 0.63 0.57 to 0.69 1 cassava with maize: maize spacing 100 x 25 cm: cassava spacing 100 x 100 cm (mean of three	0.63	0.57 to 0.69		Nigeria	Dadan	Ana et al. (1977, p. 79)
		repetitions on slopes of 5, 10 and 15%)						

Table	e 34-5Annex:	Table 34-5Annex: Detailed C factors for groundnut		-				
no.	groundnut	description	C factor		measure- ment	country	location	literature
			mean	extremes	[a]			
-	monocrop	spacing: 20 x 40 cm; on level	0.59	0.43 to 0.87	1	Ivory Coast	Adiopodoum	Ivory Coast Adiopodoum Roose (1975, p. 30/31)
7	1 3 1	ground; on contour conventional tillage up- and down-slope; residues	0.27	0.27 0.22 to 0.31	_	Malaysia	ł	Sulaiman et al. (1981, p. 280)
e	:	incorporated; 3 repetitions on four of 8 different Indonesian soil types,	0.3	ı		Indonesia	Ţ	Keersebilck (1990, p. 570)
4	:	planted on contour	0.452	r	ı	5	ı	Abdurachman et al.
S	1 3 1		0.52	I	ı	Malaysia	Serdang	Mokhtaruddin &
9	;	,	0.28	ı	ı	;		Sulaiman et al. (1983)
7	;	spacing 60 x 30 cm on 3.5%	0.34	ı	0.5	Ghana	Kumasi	Quansah et al. (1990)
		slope; plowed and harrowed; 2 repetitions						

Table 34-5 Annex: Detailed C factors for groundnut

no.	groundnut	description	С	C factor	measure-	measure- country location	location	literature
					ment			
					period			
			mean	mean extremes	[a]			
×		spacing 40 x 20 cm on	0.45	0.22 to 0.64	5	Cameroon Yaound	Yaound	Nill (1993)
		contour; plowed; without						
		residues						
6	monocrop/notill as above	as above	0.33	0.33 0.19 to 0.47 1	_	;;	;	
01	intercrop	+ pigeon pea	0.495	I	I	Indonesia		Abdurachman et al. (1984)
=	:	+ cowpea	0.571		-	-	-	- - -
2	mulch	4 t/ha straw mulch	0.049		1			:,

Table 34-5 Annex, continue

no.	treatment	description	C	C factor	measure- ment	country	location	literature
				-	period			
	plow*2	spacing 0.9 x 0.5 m; slope	mean 0.16	extremes 0.02 to 0.12	[8]	Zimbabwe	Domboshawa	Vogel (1992., p. 13)
5		4.5 %, concerct of contouring (0.5) spacing 0.9 x 0.62 m; slope 4.5 %, corrected for	0.18	0.04 to 0.17 3*1	3*1	:	Makaholi	1 2 1
ŝ	1 3 1	contouring (0.5)	0.52	0.5	USA/ Homoii	Molokai	El-Swaify et	
4	;		0.637	I	-	Indonesia		Abdurachman et al.
5	;	T	0.38	ı		Malaysia	Serdang	(1964) Mokhtaruddin & Mosna (1070)
ý	1 3		0.39		ı	:	ı	Sulaiman et al. (1983)
2	;	12 % slope; along slope	0.11	I	3	Brazil	Alagoinha	Leprun et al. (1986., p. 226)
x	:	5.5 % slope; hand hoe	I	6	;	Brasilia	- * -	
6	:	tillage; 0.50 spacing: 0.6 m between rows: 20000 to 51000	0.82	I	ſ	Kenya	Katumani	Ulsaker & Kilewe (1984., p. 233)
		plants/ha depending on rain volume: 20 - 60 kg/ha N., 20						

Table 34-6 Annex: Detailed C factors for maize

uo.	treatment	description	С	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
01		disc plow and harrow; plan- ted along slope spacing 75	0.125	ı	_	Nigeria	Ibadan	Lal (1976a., p. 31)
Ξ	- - -	spacing 80 x 20 cm., 16 % slope corrected for contouring (0.7)	0.37	0.31 to 0.41	(1	Cameroon	Yaound	Nill (1993)
12	:	according to yield level 0.4 to 0.9	,	ı	ı		ı	Roose (1975., p. 40)
13	plow + residues	as no. 10 but with maize residues	0.084	0.057 to 0.099	5	Nigeria	Ibadan	Lal (1976a., p. 31)
4	;	with maize residues	0.026	ı	,	Malaysia	Serdang	Mokhtaruddin & Maene (1979)
15	:	disc plow and harrow: planted along slope., spacing 75 x 25 cm; 120 N., 60 P., 60 K: cowpea residues	0.176	0.167 to 0.184	CI	Nigeria	Ibadan	Lal (1976a., p. 31)
16	:	cted for owpea ons	0.52	0.44 to 0.58	2	:	Alore	Sabel-Koschella (1988)
17	intercrop	with Lotus corniculatus	0.4	ı	0.5	USA/Hawaii Molokai	Molokai	El-Swaify et al. (1988, p. 4)
81	1 1 5 5 1 1	with Trifolium hortum with beans	$0.29 \\ 0.30$	0.5 -	1 1	- " - Rwanda	;;	. ". Lewis (1986 in: Vouno - 1989 - p. 33)
20	notill without residues	notill without spacing and fertiliser as residues above	0.081		_	Nigeria	Ibadan	Lal (1976a., p. 31)

Table 34-6 Annex, continue

literature		â	: Kilewe 233)	92 p. 13)				a., p. 31)	Sabel-Koschella (1988)
lite		Nill (1993)	Ulsaker & Kilewe (1984., p. 233)	Vogel (19	:	:	:	Lal (1976a., p. 31)	Sabel-Ko:
location		Yaound	Katumani	Domboshawa Vogel (1992 p. 13)	Makaholi	Domboshawa	Makaholi	Ibadan	Alore
country		Cameroon	Kenya	Zimbabwe	:	:	;	Nigeria	:
measure- ment period	[a]	-	с.	4 3	3 3	38 3	~	-	0
C factor	extremes		,	0.01 to 0.04	0.01 to 0.03 3	0.01 to 0.038 3	0.014 to 0.026		
C	mean	0.017	0.24	0.03	0.022	0.028	0.02	0.001	0.034
description		spacing 20 x 80 cm., on 16 % slope., corrected for	concourni (U.S.) 60 cm between rows., plant density between 51000 and 20000 plants/ha depending on season rainfall; 20 to 60	kg N and 20 kg P spacing 0.9 x 0.5 m; 4.5 % slope: corrected for	contouring (0.2) spacing 0.9 x 0.6 m; 4.5 % slope: corrected for	contouring spacing 0.9 x 0.5 m; 4.5 % slope., corrected for	contouring (0.5) spacing 0.9 x 0.6 m., 4.5 % slope: corrected for contouring (0.5)	as no. 22, but residues of	former cowpea crop icit cowpea residues: 6 % slope: corrected for contouring
treatment		:	:	٤- • -	\$ *- *-	9*	9*	notill +	residues
no.		5	52	23	54	25	26	27	28

Table 34-6 Annex, continue

no.	treatment	description	С	C factor	measure-	country	location	literature
		·			ment period			
			mean	extremes	[a]			
29		spacing 0.9 x 0.5; with maize residues; corrected	0.012	1	3	Zimbabwe	Domboshawa	Domboshawa Vogel (1992., p. 13)
30	-**	tor contour planting spacing 0.9 x 0.6 m; with maize residues; corrected for contour planting	0.011	0.016 to 0.017	б	:	Makaholi	
31	1 2 1	7.5 % slope; spacing 75 x 25 cm., fertilizer 19., 3 and 15 kg/ha of NPK	0.031	0.0063 to 0.077	ŝ	Ghana	Kwadoso	Bonsu & Obeng (1979., p. 515)
32	;	as above; but 3 % slope	0.035	-*5	_	;	Ejura	- ** -
33	reduced	spacing: 0.75 x 0.25 m; 7.5	0.02	0.038 to	3	;	Kwadoso	; ;
	tillage	% slope; 19., 3 and 15 kg/ha of N., P and K; plowed without harrowing;		0.0057				
		two handweedings	10.041	4	-	÷	Eineo	-
34	1.5	as above; 3 % slope	0.041	C*- 0.00563 to	- ~	; ;	Ejuia Kwadoso	
ç	muicu	spacing 0.73 X 0.23 m. fertilizer 19., 3 and 15 kg/ha of N., P and K; plowed and harrowed: mulch quantity?	6700.0	0.0013	n.	1		
36) 2	as mulch plot above: 3 % slone: mulch quantity?	0.004	\$*-	_	;	Ejura	ן נ
37	; ;	with imperata mulch	0.02	,	,	Malaysia	ſ	Sulaiman et al. (1983)
38	intercropped/ mulch	intercropped/ with groundnut plus 4 t/ha mulch straw mulch	0.128			Indonesia		Abdurachman et al. (1984)

Table 34-6 Annex, continue

	-		ľ					
.0.	treatment	description	5	C factor	measure-	country	location	literature
					ment			
					period			
			mean	extremes	[a]			
39	ridge	spacing: 0.75 x 0.25 m; 3 %	0.026	0.057 to	3	Ghana	Kwadoso	Bonsu & Obeng (1979.
		slope; 19., 3 and 15 kg/ha of		0.0087				p. 515)
		N., P and K; plowed and						
		harrowed; ridges across slope						
40	; ;	ridge on contour; 7.5 % slope 0.054	0.054	-*5	_	:	Ejura	;,
41		spacing: 100 x 20 cm. on	0.67	0.25 to 0.95 Ivory	lvory	Adiopodoum	Roose (1975	
		ridges along slope			Coast		p. 30/31)	
42	tied-ridging-	spacing 0.9 x 0.5; ridges on	0.018	0.006 to	3	Zimbabwe	Domboshawa	Vogel (1992., p. 13)
	/notill*5	contour; 25 cm high contour		0.026				
		ridges with 1 % lateral slope;						
-		ties at intervals of 1.5 m and						
		app. 15 cm high						
43	*5	spacing 0.9 x 0.6; ridges on	0.004	0.003 to	3	; ,	Makaholi	
		contour; 25 cm high contour		0.006				
		ridges with 1 % lateral slope;						
		ties at intervals of 1.5 m and						
		app. 15 cm high						
*1 0	Duly data of the	Only data of the 2nd to 4th experimental year were considered. Results of 1st year skipped due to residual effects of natural fallow	re conside	rred. Results o	f 1st year ski	ipped due to re-	sidual effects of	natural fallow
*2 P	lowing with ox	Plowing with oxen drawn single furrow mould-board plow right after harvest to 20 - 25 cm depth	oard plow	right after har	vest to 20 -	25 cm depth		
*3 8	Ripping betweer	Ripping between former maize rows with an oxen drawn single ripper tine to 20 - 25 cm depth	n drawn si	ngle ripper tin	e to 20 - 25	cm depth		
*4 *	As *3 but residu-	As *3 but residues of former maize crop left						
*5 S	oil was plowed	Soil was plowed to 20 - 25 cm death at beginning of experiments 25 cm high contour ridoes (1 % side slove) were formed with accordance	of experi	ments 25 cm	hish contour	r ridges (1 % si	de slone) were fi	ormed with oven drawn

Soll was plowed to 20 -2

22 cm depth at beginning of experiments. 22 cm high contour ridges (1 % side slope) were formed with oxen drawn mouldboard ridger. In subsequent years,, no plowing was carried out but ridges were reformed after harvest and 6 weeks after planting. 15 cm high cross ties were also formed twice a year at 1 m intervals in the furrows. Planting was on top of the ridges,

*6 Planting holes were opened with hand-hoe (badza holing out in Zimbabwe)

Table	: 34-7 Annex:	Table 34–7 Annex: Detailed C factors for diverse crops	ops					
no.	crop	description	C	C factor	measure- ment period	country	location	literature
			mean	extremes	[a]			
-	Bambara nut	Bambara nut plowed; 3.5% slope; spacing 30 x 30 cm; 2 repetitions	0.43	1	0.5	Ghana	Kumasi	Quansah et al. (1990)
0	beans	mung bean	0.44	0.44 0.40 to 0.47	_	Malaysia	1	Sulaiman et al. (1983, p. 280)
с.,	; ;	mung bean; tilled up- and down-slope; residues	0.38	·	,	;	I	5 1
		incorporated; 3 repetitions						
4	;;	red bean	0.16	I	ı	Indonesia	ı	Abdurachman et al. (1984)
Ś		-	0.19	I	I	Rwanda	ı	Lewis (1986 in: Young
9	;	Jack bean (Canavalia);	0.17	I	0.5	Ghana	Kumasi	Quansah et al. (1990)
		plowed; 3.5% slope; spacing 30 x 30 cm; 2 repetitions						
7	cabbage	planted as monocrop on	0.6	ı	-	Indonesia	ı	Keersebilck (1990, p. 570)
		Londone on + out of a unitation Indonesian soil types						

Table 34-7 Annex: Detailed C factors for diverse crops

no.	crop	description	C	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
~	chili		0.33		ı	Malaysia		Sulaiman et al. (1983)
6	cotton	12% slope; planted along	0.29	ı	ж	Brazil	Alagoinha	Leprun et al. (1986, p.
		slope						226)
01	;	as above; planted on contour 0.139	0.139	ı	ŝ	;	- - 	
Ξ	;	2nd cycle	0.5	-	ı	-	-	Roose (1975, p. 40)
12	cowpea	plowed	0.27	ı	I	Malaysia	. 1	Sulaiman et al. (1983,
								p. 280)
13	:	plowed: semi-erect cultivar:	0.21	ı	0.5	Ghana	Kumasi	Quansah et al. (1990)
		3.5% slope; spacing 90 x 30						
		cm; 2 repetitions						
4	cowpea +	plowed up- and down-	0.26	0.26 0.23 to 0.29	-	Malaysia	,	Sulaiman et al. (1981,
	residues	slope; residues						p. 280)
		incorporated: 3 repetitions						
15	cowpea +	disc plow + harrow; planted	0.043	,	-	Nigeria	Ibadan	Lal (1976a, p. 31)
	residues	along slope; maize residues						
16	;	disc plowed; maize	0.14	0.14 0.05 to 0.28	0	;	Alore	Sabel-Koschella
		residues; 6% slope; 2 repe-						(1988)
		títions						

Table 34-7 Annex, continue

		ncontinni	<u>ر</u>	C lactor	measure-	country	location	llterature
		·			ment period			
			mean	extremes	[a]			
		plowed; maize residues; 6%	0.006	0.002 to	2	, , ,		Nill (1993)
		slope; spacing 75 x 25 cm;		0.014				
		2 repetitions						
		notill; maize residues;	0.01	0.0004 to	2	;	Ibadan	Lal (1976a, p. 31)
		planted along slope		0.02				
61	- * -	notill; maize residues; 6%	0.004	0.002 to	7	;	Alore	Sabel-Koschella
		slope		0.006				(1988)
20 -		notill; maize residues; 6%	0.0003	0.0002 to	2		;,	Nill (1993)
		slope; spacing 75 * 25 cm		0.0004				
		across stope						
21 Ir	Irish potatoes	1	0.22	ı	4	Rwanda	ı	Lewis (1986 in:
								Young 1989, p. 33)
22 le	lemon grass		0.434			Indonesia	1	Abdurachman et al.
								(1984)
23 pt	papaya	without cover crop	2.1	ı	ı	1	I	Abdul Rashid (1981
								in: Sulaiman et al.
								1983)
24 sc	soya		0.399	ı	ı	Indonesia	I	Abdurachman et al.

Table 34-7 Annex, continue

2	crop	description	C	C factor	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
25	- 3 -		0.11	0.11 0.02 to 0.19	-	Nigeria	Ibadan	Aina et al. (1979)
26		planted on contour on 4 out	0.38	,	-	Indonesia		Keersebilck (1990, p.
		of 8 different Indonesian						570)
		soil types						
27	- ,, -	hand tillage; slope 5.5% ;	0.154	ı	9	Brazil	Brasilia	Leprun et al. (1986, p.
								228)
28		notill (probably without	0.103		9	:'	;	
		residues left because notill-						
		subfactor = 0.67); slope						
		5.5%						
29	sweet	1	0.23		ı	Rwanda	,	Lewis (1986 in:
	potatoes							Young 1989, p. 33)
30	tobacco	2nd cycle	0.5	I	,			Roose (1975, p. 40)
31	tobacco		0.45	I		Rwanda		Lewis (1986 in:
								Young 1989, p. 33)

Table 34-7 Annex, continue

no.	crop	description	C	C factor	measure- ment	country	location	literature
					period			
			mean	extremes	[a]			
32	wheat-soya	rotation on 12% slope.	0.113	ı	9	Brazil	Guaiba	Leprun et al. (1986, p.
		wheat residues burned; soya						230)
		residues incorporated						
33	wheat-soya	as above but all residues	0.05	ı	9		:	:
		surficially incorporated						
34		rotation as above but with	0.04	ı	9	:	;;	: .
		notill						
35	wheat-maize	as above, conventionally	0.1	,	9	;	;;	
		tilled, residues incorporated						
36	- : .	as above but notill (residues	0.014	,	9		: .	:
		maintained)						
37	yam	depending on planting time		0.2 to 0.8	,		,	Roose (1975, p. 40)
38	;	on mounds	0.23	0.16 to 0.67		Ivory Coast	Ivory Coast Adiopodoum	Roose (1975, p. 30/31)
39	yam	intercropped with maize;	0.07	0.04 to 0.09	-	Nigeria	Alore	Sabel-Koschella
		plus residues; 60 cm high						(1988)
		mounds spaced 0.7 x 1.4						
		along slope: 6% slope; 2						
		repetitions						

Table 34-7 Annex, continue

Table	34-8Annex:	Table 34-8Annex: Detailed C factors for notillage							
no.	notillage	description	C	C factor	measure- ment period	country	location	literature	
			mean	extremes	[a]				
	without residues	only holes for sowing are opened with a handhoe. rest of field stays undisturbed: traditional tillage system in Zimbabwe (badza holing	0.71	0.6 to 1	4	Zimbabwe	Domboshawa	Domboshawa Vogel (1992, p. 13)	
2	:	out) as above	0.45	0.32 to 1.14	4	;	Makaholi	;	
~	:	calculated from notill and plowed groundnut on 18% slone	0.73	1		Cameroon	Yaound	Nill (1993, p. 157)	
4	:	calculated from notill and plowed maize 1972 (Lal. 1976a)	0.65	ı	1	Nigeria	Ibadan	Lal (1976a, p. 31)	
Ś	:	subfactor calculated from soya planted plots on 5.5% slope (notill probably without residues)	0.67		Q	Brazil	Brasilia	Leprun et al. (1986, p. 228)	. 7

Table 34-8 Annex: Detailed C factors for notillage

no.	notillage	description	C factor		measure- ment	country	location	literature
					period			
			mean	extremes	[a]			
9		seed slit ripped between	0.81	0.6 to 1.18	4	Zimbabwe		Domboshawa Vogel (1992, p. 13)
		former maize stubble (across slone of 4.5%)						
7	;	as above	0.51	0.37 to 1.0	4	; ,	Makaholi	- : -
8	with residues	with residues calculated from cassava;	0.17	0.11 to 0.37		2 years Colombia	Santander de	Reining (1991, p. 111)
_		slopes 7 - 13%			with 3		Quilichao	
					reps			
9		as above but slopes 13 -	0.104	0.06 to 0.27	2 years	۔ •	Mondomo	;
_		20%			with 2			
					reps			
10	- 	maize residues left in field; slone 7 - 13%	0.41	0.3 to 1.18	4	Zimbabwe	Domboshawa	Domboshawa Vogel (1992, p. 13)
Ξ		as above but slope 13 - 20%	0.29	0.11 to 0.77	4	: '	Makaholi	;;
12	;	calculated from wheat-	0.14	ı	9	Brazil	Guaiba	Leprun et al. (1986, p.
		maize rotation planted on						230)

Table 34-8 Annex, continue

Annex 4 Protection and management

Annex 4.1 Detailed support and management (P) factors

Anr	lex 4.1 Deti	Annex 4.1 Detailed support and management (P) factors	ement	(P) factor	s				
Tabl	le 41-1 Annex	Table 41-1 Annex: Detailed P factors for contouring	guing						
no.	derived from	description	Pf	P factor	measure- ment period	country	location	literature	
			mean	extremes	[a]				
_	USLE	slope: 1 - 2%	0.6	1		USA	T	Wischmeier & Smith	
						:		(0/61)	
2	;	slope: 3 - 5%	0.5			1		: :	
~	;;	": 6 - 8 <i>%</i>	0.5			;	,	1	
4		": 9 - 12%	0.6	,	,	;	,	: ' '	
ŝ	:	" : 13 - 16%	0.7	·	,	;	ŗ	; ;	
9	;	" : 17 - 20%	0.8	I	ı	;	t	; ;	
5	;	: 21 - 25%	0.9	ı	,	- : -	,	• •	
~		calculated from cotton	0.41	ı	ŝ	Brazil	Alogoinha	Leprun et al. (1986,	
		planted plots on 12%						p. 226)	
		slope							
6		calculated from	0.73	,	-	India	I	Patil & Bangal (1991)	<u> </u>
		Pennisetum americanum							
		(pearl millet) on 1 and							
		1.5% slope under 3 storms							
2		calculated from maize on	0.66		1.5	Kenya	Katumani	Ulsaker & Kilewe	
		7 to 10% slopes, mean of						(1984. p. 233)	
		6 plots							

Table 41-1 Annex: Detailed P factors for contouring

no.	method	description	Ρf	P factor*1	measure-	country	location	literature
					ment period			
			mean	extremes	[a]			
	ridges on contour	ridges 1 m apart on 7 to 13% slopes	0.36	0.3 to 0.59	2 years with 3	Colombia	Santander de Quilichao	Reining (1991, p. 111)
7	:	as no. 1 but slopes $13 - 20\%$	0.08	0.06 to 0.15 2 years with 2	2 years with 2	;	Mondomo	, ; ,
ξ	ridges along slope	ridges along slope 1 m apart with cassava for slopes 7 - 13%	4	4 to 6	2 years with 3 reps	:	Santander de Quilichao	, ; ,
	:	as no. 3 slopes 13 - 20%	0.93	0.31 to 3.4		;	Mondomo	:
5	tied contour ridges with plow	7% slope. measured with pineapple	0.07	1	4	Ivory Coast	Adiopodoum	Roose (1975. p. 39) ^{*1}
9	;		0.21	0.1 to 0.2	,		ı	Roose (1977, p. 70)
L L	tied contour ridges with notill	ridges (25 cm high) are established in 1st year, afterwards notill, ties (10 - 15 cm high) established every year: 4.5% slope, cron on ridoe		0.1 to 0.27	4	Zimbabwe	Domboshawa	
0	:		0.025	0 +0 0 11	P.	:	Mataboli	:

 Table 41-2Annex:
 Detailed P factors for ridges

Tabl	e 41-3Annex: De	Table 41-3Annex: Detailed P factors for mounds						
no.	description	P factor*1		measure- ment period	country	location	liter	literature
		mean	extremes	[a]				
_	cassava	1.13	I	_	Ivory Coast	Adiopodoun	Ivory Coast Adiopodoum Roose (1975, p. 39)	5, p. 39)
7	mounds pineapple	0.29	ı	ţ	;	;		
	mounds			i.				
Tabl	e 41-4Annex: De	Table 41-4Annex: Detailed P factors for bunds						
no.	method	description	P factor*1		measure-	country	location	literature
		·			ment period			
			mean	extremes	[a]			
_	stone bunds	3% slope; 30 cm high stone	0.27		1	Niger	Allokote	Rose &
		bunds every 80 cm vertical						Bertrand
		distance, on contour; 1st year						(1971, p. 1276)
7	, , ,	as above but 2nd and 3rd year	0.05		7	;	;	
"	earthen bunds	like stone bunds no. I but with	0.0022	,	-		:'	; ;
_		less stones which cover an						
		cannen core vegenateu uy natural herbes						
4	י ג י	as above but 2nd year	0.04	-	-	:	:	:

Table 41-3 Annex: Detailed P factors for moundsTable 41-4 Annex: Detailed P factors for bunds.

ò	no. vegetation of strip	description	P factor*1		measure- ment neriod	country	location	literature
			mean	extremes	[a]			
	fallow	1st year, 2 m large strip on	0.117		_	Ivory Coast	Bouake	Roose & Bertrand
	vegetation	4% slope and 46 m cropped						(1971. p. 1270
		interspace (groundnut +						
		maize)						
~		as no.1 but 2nd year:	0.113	•	_	;	;	;
		cropped to maize + maize						
~		1 st year; 4 m large with	0.04	ı	_	:	';'	
		fallow vegetation (rest like						
		no. 1)						
4	;	2nd year; 4 m large (rest	0.104	ı	-	;	;;	: '
		like no. 2)						
2		2 m large. interspace 15 m	0.3	ı	-	;	Adioupodoum - " -	m - " -
		cropped to cassava on heaps						
9	- : -	4 m large. interspace 15 m	0.1	ı	-	:	;	;
		cropped to cassava on heaps						
	Andropogon	3% slope; three rows of A.	0.64	ı	-	Niger	Allokoto	;
	gayanus	gayanus every 40 cm						
		vertical distance, contour						
		ridges in between: 1st year						
×		like no. 7 but 2nd and 3rd	0.12	,	CI	; ;	;;	: '
	-							

Table 41-5 Annex: Detailed P factors for buffer strips

	and of a states		۵		measure.	Country	location	iterature
.0 10	no. vegetation of strip	aescubrion	r factor*1		ment	f 11100		
			mean	extremes	[a]			
6	grass	1 m large strip on	0.92	1.04 (1st	2 years	Columbia	Santander de	Reining (1991, p. 111)
	à	contour 10 m apart.		year) to	with 3		Quilichao	
		cassava between strips		0.89 (2nd	replicat-			
		(7 to 13% slopes)		year)	ions			
10	- : -	like no. 9 but slopes 13 0.09	0.09	0.08 (2nd	;	: :	Mondomo	:
		- 20%		year) to				
				0.15(1st				
=	Pennisetum or	strips (width?) every	0.14	0.07 to 0.23 0.5 with	0.5 with	Rwanda	Gakenke	Nyamulinda (1991, p.
	Trypsacum or	10 m on 54% slope			6 plots			48)
	Setaria with or							
	without Sesbania							
	or Grevillea*1							
12	:	strips every 5 m on	0.88	0.47 to 1.7	0.5 with	;	Mbwe	••••
		50% slope			6 plots			
13	Pennisetum or	strips every 5 m on	0.49	0.39 to 0.57 0.5 with	0.5 with	;	Rutoyi	•
	Trypsacum or	60% slope			six plots			
	Setaria with or							
	without Grevillea							
	or Calliandra*1							

Annex 4.2	Some useful spec	cies for soil and	water conservation

botanical name	common name	remarks	longevit	longevityecology*1	_						
				biotem-	biotem- rainfall peratu- [mm] re	Hq	drought water- logging	water- logging	salt	shade	litera- ture
Axonopus affinis	carpet grass	carpet grass mainly for erosion control on risers and waterwave	Р	:	ч	5.1-6.0	1				-
Brachiaria para grass mutica	para grass	mainly for erosion control on waterways	Р	> 22	1000- 2000	4.5-5.0	I	+	,		_
Cajanus cajan	pigeon pea	leguminous bush. severely attacked by termites	Р	> 18	< 400- 4000	4.5-> 8.1	+	,	,	,	-
Calopogo- nium mucunoi- des	Calopo	leguminous cover crop p	d c	> 22	1000- 4000	4.5-6.0	1		1		_
Canavalia ensiformis	Jack bean	leguminous crop for cover and green manure	c,	> 18	600- 4000	4.5-7.0	+			+	-
Centrose- ma pube- scens	Centrosema	Centrosema leguminous cover crop p	d	ç.	۲	¢.	+			ر	-
Crotalaria sun hemp iuncea	sun hemp	leguminous green manure	e	> 14	400- 4000	5.6-7.0	+		1		_

Table 42-1 Annex:Useful species for erosion control, green manuring,
mulch or cover crop

namebiotem-rainfallpHBernudamainly for erosionporatureimmlpfBernudamainly for erosionp>12400-5.1-> 8.1grasscontrol on roadsp>14-24h5.6-6.0desmodiumgreen manuring cropp14-24h5.6-6.0bangolamainly for erosionp14-24h5.6-5.8.1sweepingmainly for erosionp10-24<400-5.6-5.8.1sweepingmainly for erosionp>221600-?acreepingleguminous cover cropp>221600-?indigoas840006.6-7.5atelucaenaleguminous cover anda8400-6.6-7.5atelucaenaleguminous cover anda8400-6.6-7.5atelucaenaleguminous cover anda8400-6.6-7.5atelucaenaleguminous cover anda8400-6.5-7.5indigop?????atelucaenaleguminous cover anda6.5-7.51600-?atelucaenaleguminous cover anda6.2-2400-6.5-7.5indigotelucaenaleguminous cover anda6.2-22.2-1.600-1.4-5-0indigotelucaenaleguminous cover anda6.2-2-2.2-1.600-2.2-2.2-1.600-1.4-5-7.	botanical	common	remarks	longevity				ecology*1				
biotem-rainfallpHBernudamainly for erosionp>12400-5.1-> 8.1grasscontrol on roadsp>14-24h5.6-6.0umgreenleafleguminous cover andp14-24h5.6-6.0desmodiumgreen manuring cropp14-24h5.6-8.1stasscontrol on roadsp10-24<400-5.6-8.1isweepingmainly for erosionp10-24<400-5.6-5.8.1isweepingmainly for erosionp10-24<400-5.6-5.8.1indigolovegrasscontrol on roadsp10-24<400-5.6-5.8.1indigolovegrasscontrol on roadsp10-24<400-5.6-5.8.1indigolovegrasscontrol on roadsp10-24<400-5.6-5.8.1indigolovegrasscontrol on roadsp10-24<400-5.6-5.8.1indigolovegrasscontrol on roadsp10-24<400-5.6-5.8.1indigolovegrasslovegrasslovegrass5.6-5.8.11600-3.6-5.5indigolovegrasslovegrasslovegrasslovegrass5.6-5.8.1indigolovegrasslovegrasslovegrasslovegrass5.6-5.8.1indigolovegrasslovegrasslovegrasslovegrasslovegrassindigolovegrasslovegrasslovegrasslovegrasslovegrassindigo <td< th=""><th>name</th><th>name</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	name	name										
Bermuda mainly for erosion perature Innut Bermuda mainly for erosion p >12 400- grass control on roads p >14-24 h desmodium green manuring crop p 14-24 h adsmodium green manuring crop p 14-24 h is weeping mainly for erosion p >16 800- is weeping mainly for erosion p 10-24 <400- indigo control on roads p 10-24 <400- indigo ereeping leguminous cover crop p 22 1600- indigo indigo a leguminous cover crop p 22 1600- indigo indigo indigo p 22 1600- 1000- indigo indigo a leguminous cover crop p 2 4000 indigo indigo indigo p io-22 1600- indigo indigo a leguminous cover crop p 2 400- indigo indigo indigo p io-22 1600- indigo indigo p p				Ţ	biotem-	rainfall	Ηd	drought	drought waterlog-	salt	shade	litera-
Bernuda mainly for erosion p > 12 400- grass control on roads p > 12 400- grass control on roads p 1+24 h desmodium green manuring crop p 1+24 h desmodium green manuring crop p > 16 800- is weeping mainly for erosion p 10-24 < 400- indigo mainly for erosion p 10-24 < 400- indigo mainly for erosion p > 22 1600- indigo ercrepting leguminous cover and a 8 4000 uur- lablab bean leguminous cover and a 8 400- uur- lablab bean leguminous cover and a 8 400- uur- lablab bean leguminous cover and a 8 400- uur- lablab bean leguminous cover and a 8 400- uur- lablab bean leguminous cover and a 8 400- <td< th=""><th></th><th></th><th></th><th></th><th>perature</th><th>mm</th><th></th><th></th><th>ging</th><th></th><th></th><th>Inre</th></td<>					perature	mm			ging			Inre
grass control on roads 4000 um greenleaf leguminous cover and p 14-24 h desmodium green manuring crop p 14-24 h nainly for erosion p 14-24 h ns grass control: good folder 4000 is weeping mainly for erosion p 10-24 <400- lovegrass control on roads p 10-24 <400- indigo mainly for erosion p 10-24 <400- indigo mainly for erosion p 22 1600- indigo eguminous cover and a 8 4000 urr< lablab bean leguminous cover and a 8 4000 urr< lablab bean leguminous cover and a 8 400- urr< lablab bean leguminous cover and a 8 400- urr< lablab bean leguminous cover and a 8 400- urr< lablab bean leguminous cover and a 8 400- urr< lablab bean leguminous cover and a 8 400- urr< lablab bean leguminous cover and a 6-22 400- ur	Cynodon	Bermuda	mainly for erosion	р		400-	5.1->8.1				ı	_
tum greenleaf leguninous cover and p 14-24 h n desmodium green manuring crop > 16 800- a Pangola mainly for erosion p > 16 800- ens grass control: good fodder p 4000 tis weeping mainly for erosion p 10-24 < 400- indigo mainly for erosion p p 10-24 < 400- indigo mainly for erosion p p 10-24 < 400- indigo indigo pur- lablab bean leguminous cover crop p > 22 1600- indigo indigo a a 8 4000 indigo indigo pur- a 8 4000 indigo indigo p p 22 1600- indigo indigo p a 8 4000 indigo indigo p p 22 1600- indigo indigo p p 22 1600-	dactylon	grass	control on roads			4000						
 desmodium green manuring crop Pangola mainly for erosion Pangola mainly for erosion grass control: good fodder grass control: good fodder do entrol: good fod entrol: good entrol: grop entrol: manuring crop entrol: grop entrol: groen manuring crop entrol: groen manuring crop<th>Desmodium</th><th>greenleaf</th><th>leguminous cover and</th><th>d</th><th>14-24</th><th>h</th><th>5.6-6.0</th><th></th><th></th><th></th><th>-/+</th><th>_</th>	Desmodium	greenleaf	leguminous cover and	d	14-24	h	5.6-6.0				-/+	_
 a Pangola mainly for erosion p > 16 800- ens grass control: good fodder 4000 tis weeping mainly for erosion p 10-24 <400- lovegrass control on roads control on roads ra creeping leguminous cover erop p > 22 1600- indigo pur- lablab bean leguminous cover and a 8 400- pur- lablab bean leguminous cover and a 8 400- indigo pur- lablab bean leguminous cover and a 8 400- indigo tal leucaena leguminous trop p ? h bha Lotononis leguminous cover erop p ? 100- tupine green manuring crop p ? 4000- lupine green manuring crop p ? 4000- mi- molasses cover erop and erosion p > 20 1000- molasses cover crop and erosion p > 20 1000- 	intortum	desmodium	green manuring crop									
 ens grass control: good fodder tis weeping mainly for erosion p lovegrass control on roads ra creeping leguminous cover crop p indigo pur- lablab bean leguminous cover and a 8 400- 4000 pur- lablab bean leguminous cover and a 8 400- 4000 a leucaena leguminous bush for p bha hedges and mulch bha totononis leguminous cover and a 6 6-22 400- upine green manuring crop bha bha totononis leguminous cover and a 6 6-22 400- upine green manuring crop bha bha bha bha cover crop and erosion p > 20 1000- 	Digitaria	Pangola	mainly for erosion	р		-008	5.1-8.0				ı	
 kis weeping mainly for erosion p lovegrass control on roads ra creeping leguminous cover crop p pur-lablab bean leguminous cover and a 8 400- 900 pur-lablab bean leguminous cover and a 8 400- 4000 kindigo h deges and mulch kindigo kindige <li< th=""><th>decumbens</th><th>grass</th><th>control: good fodder</th><th></th><th></th><th>4000</th><th></th><th></th><th></th><th></th><th></th><th></th></li<>	decumbens	grass	control: good fodder			4000						
lovegrass control on roads 1600 ra creeping leguminous cover crop p > 22 1600 ? pur- lablab bean leguminous cover and a 8 4000 ? 4000 na leucaena leguminous cover and a 8 4000 6.6-7.5 na leucaena leguminous bush for p ? h > 6.5 na leucaena leguminous cover crop p ? h > 6.5 na leucaena leguminous cover crop p ? h > 6.5 nis Lotononis leguminous cover crop p ? 1 ? ? nis Lotononis leguminous cover crop p ? ? ? ? nin wolasses cover crop p ? ? ? ? nin molasses cover crop and erosion p > 20 1000- 4.4-5-0	Eragrostis	weeping	mainly for erosion	d	10-24	< 400-	5.6 -> 8.1	+				_
ra creeping leguminous cover crop p >22 1600- ? pur- lablab bean leguminous cover and a 8 400- 6.6-7.5 pur- lablab bean leguminous cover and a 8 400- 6.6-7.5 pha- leucaena leguminous bush for p ? h >6.5-7.5 pha- leucaena leguminous bush for p ? h >6.5 pha- hedges and mulch p ? h >6.5 pha- Lotononis leguminous cover crop p ? ? ? silu- yellow leguminous cover and a 6-22 400- 4.5-7.5 mi- molasses cover crop and erosion p >20 1000- 4.4-5-0	curvula	lovegrass	control on roads			1600						
indigo 4000 pur- lablab bean leguminous cover and a leguminous cover and a leucaena leguminous bush for p 2 8 400- 6.6-7.5 na leucaena leguminous cover and a leucaena 8 400- 6.6-7.5 pha- leguminous bush for p 2 2 h >6.5 nis Lotononis leguminous cover crop p 2 2 ? is Lotononis leguminous cover crop p 2 2 400- is Lotononis leguminous cover crop p 2 2 3 in wellasse cover crop and erosion p 2 2 400- in molasses cover crop and erosion p 2 20 1000-	Indigofera	creeping	leguminous cover crop	d	> 22	1600-	ċ	I			ı	-
leguminous cover anda8 400 - 6.6 -7.5green manuring cropp?h >6.5 -7.5hedges and mulchp?h >6.5 hedges and mulchp???leguminous cover cropp???leguminous cover anda $6-22$ 400 - 4.5 -7.5green manuring cropp> 20 1000 - 4.4 -5-0cover crop and erosionp> 20 1000 - 4.4 -5-0	spicata	indigo				4000						
green manuring crop 4000 leucaena leguminous bush for p ? h hedges and mulch p ? h Lotononis leguminous cover crop p ? ? Lotononis leguminous cover and a 6-22 400- lupine green manuring crop p >20 1000- coverol molasses cover of and erosion p >20 1000-	Lablab pur-	lablab bean	leguminous cover and	a	8	400-	6.6-7.5	+		,	,	_
leucaena leguminous bush for p ? h hedges and mulch Lotononis leguminous cover crop p ? ? ? vellow legminous cover and a 6-22 400- lupine green manuring crop 1800 nolasses cover crop and erosion p > 20 1000-	pureus		green manuring crop			4000						
 hedges and mulch Lotononis leguminous cover crop p ? ? yellow legminous cover and a 6-22 400- lupine green manuring crop 1800 molasses cover crop and erosion p > 20 1000- montane 	Leucaena	leucaena	leguminous bush for	d	÷.	h	> 6.5	+	+		+	_
Lotononisleguminous cover crop???yellowlegminous cover anda6-22400-lupinegreen manuring crop1800molassescover crop and erosionp> 20molassescover crop and erosionp> 4000	leucocepha-		hedges and mulch									
Lotononis leguminous cover crop ? ? yellow legminous cover and a 6-22 400- lupine green manuring crop 1800 molasses cover crop and erosion p >20 1000-	la											
yellow legminous cover and a 6-22 400- lupine green manuring crop 1800 molasses cover crop and erosion p > 20 1000- molasses cover crop and erosion p > 20 1000-	Lotononis	Lotononis	leguminous cover crop	d	c ·	¢.	÷.	+			÷	_
yellow legminous cover and a 6-22 400- lupine green manuring crop molasses cover crop and erosion p > 20 1000- molasses cover crop and erosion p > 20 1000-	bainesii											
Iupine green manuring crop 1800 molasses cover crop and erosion p >20 1000-	Lupinus lu-	yellow	legminous cover and	а	6-22	400-	4.5-7.5	,			ı	_
molasses cover crop and erosion $p > 20 1000$ -	teus	lupine	green manuring crop			1800						
water control	Melinis mi-		cover crop and erosion	р	> 20	1000-	4.4-5-0	,			,	_
grass control	nutiflora	grass	control			4000						

botanical name	common name	remarks	longevity				ecol	ecology*1			
			'	biotem- rainfall perature [mm]	rainfall [mm]	Hq	drought	drought waterlog- ging	salt	shade	litera- ture
Mucuna ca- pitata	Mucuna ca-velvet bean pitata	legminous cover and green manuring crop	e	¢.	Ч	¢.	¢.	¢.	ć	¢.	_
Panicum maximum	Guinea grass	Guinea grass good on risers; fodder	d	> 20	600- 4000	4.5-6.0		1			
Paspalum notatum	Bahia grass	cover crop and erosion control	d	> 12	800- 4000	5.1-> 8.1		1		L	-
Pennisetum clandesti- num		Kikuyu grass erosion control in highlands	d	8-24	600- 4000	5.1-6.0		ı		ı	-
Pennisetum elephant purpureum grass	elephant grass	fodder and mulch	d	~ ~	600- 4000	4.5-5.5				,	_
Stylosan- thes guia- nensis	stylo	legminous cover and green manuring crop	ط	> 20	1000- 4000	4.5-5.0	I		4	I	_
Vigna un- guiculata	cowpea	legume	a	> 14	600- 4000	4.5-> 8.1			1	I	_
Euphorbia balsamifera		live hedge. propagated by cuttings or seeds	d	ı	i	ı	ī		1	ı	_
Jatropha curcas	pourgh re	live hedge seeded: slow establishment: cuttings severely attacked by termites	d	T	t		1	, I			7

botanical name	common name	remarks	longevity				ecology*1				
				biotem- rainfall perature [mm]	rainfall [mm]	Hq	drought water- logging	water- logging	salt	shade	litera- ture
Agave sisa- lana	sisal	live hedge: sometimes not accepted close to homesteads (hide-away	Ь	> 22	< 400- 4000	5.6-> 8.1	+				5
Andropo- gon gavanus		Gamba grass erosion control; fodder	b	> 18	1600- 4000	4.5-5.0	+	1		I	5
Bracharia ruziziensis	Congo grass	erosion control; fodder; quick establishment, regrowth verv variable	d	¢.	÷.	¢.	I	ľ		¢.	0
Stylosan- thes hamata		erosion control: rapid regrowth	d	¢.	¢	ć	¢.	ć ć		¢.	5
Tephrosia vogelii		green manure on clayey soils	d	> 24	1000- 4000	4.5-7.5				ı	8
Phacelia ta- phacelia nacetifolia	phacelia	fodder, cover and gree manuring crop	n	ç.	ç.	¢.	¢.	¢.		¢.	e
Bothrio- chloa ischaemum	Turkestan bluestem	recultivation of eroded pastures	d	8-10	1000- 1400	6.1-7.0	+		·		ω
Pueraria phaseoloides	kudzu	leguminous, creeping cover and green manuring crop. fodder	ď	> 22	1000-4000	4.5-7.0		+		+	ő

botanical name	common name	remarks	longevity				ecology*1		1	
				biotem- rainfal perature [mm]	-	Hq	pH drought waterlog- salt	salt	shade litera- ture	litera- ture
Mucuna uti- lis	velvet bean	Mucuna uti- velvet bean leguminous cover crop lis and vegetable	a	ç.	e.	ç.	D		¢.	ŝ
Mucuna mucunoides		leguminous. creeping cover crop	a	c ·	ċ	ċ	¢.	¢.	ć	
[*	most of th	most of the ecological data were from Duke & Terrell (1974)	m Duke & '	Terrell (19	74)					
Literature: 2 3		Sheng (1989) Hijkoop et al. (1971) Rehm & Espig (1976)								

	annual precipitation [mm]	
200 to 500	500 to 900	900 to 1200
Acacia albida	Adansonia digitata	Albizia lebbeck
Acacia radiana	Anacardium digitata	Anoegeissus
		leiocarpus
Acacia senegal	Azadirachta indica	Borassus aethiopum
Annona senegalensis	Bauhinia spp.	Butyrospermum parkii
Balanites aegyptiaca	Cassia siamea	Casuarina
		equisetifolia
Boscia salicifolia	Combretum spp.	Cordia abyssinica
Commiphora africana	Eucalyptus	Dalbergia
	camaldulensis	melanoxylon
Conocarpus lancifolius	Ficus sycomorus	Erythrina abyssinica
Dobera glabra	Haxoxylon persicum	Markhamia spp.
Euphorbia balsamifera	Parkia biglobosa	Tamarindus indica
Maerva crassifolia	Salvadora persica	
Parkinsonia aculeata	Sclerocarya birrea	
Prosopis juliflora	Tamarix articulata	
Ziziphus spp.	Terminalia spp.	

Table 42-2 Annex: Useful trees according to rainfall area(Weber & Stoney, 1986)

Further information on suitable species can be found in:

Young (1989) Hudson (1975) von Maydell (1983) Merlier & Montegut (1982) ICRAF/GTZ Multipurpose Tree & Shrub Database

Literature

- Abdul Rashid, F. D. (1975): Studies on the correlation between the erodibility of a standard sand and five Malaysian soils. Unpublished B. Agr. Sc. Project Paper, University of Malaya, Kuala Lumpur, Malaysia.
- Abdurachman, A.; Abujamin, S. & Kurnia, U. (1984): Soil and crop management practices for erosion control. Pembr. Pen. Tanah Dan Pupuk 3: 7-12.
- Aina, P.O; Lal, R. & Taylor, G.S. (1979): Effects of vegetal cover on soil crosion on an Alfisol. In: Lal, R. & Greenland, D.J. (eds.): Soil physical properties and crop production in the tropics. John Wiley & Sons, Chichester: 501-508.
- Allison, F.E. (1973): Soil organic matter and its role in crop production. Develop-ments in Soil Science 3, Elsevier, Amsterdam: 637 pp.
- Ambassa-Kiki, R. & Lal, R. (1992): Surface clod size distribution as factor influencing soil erosion under simulated rain. Soil Tillage Res. 22: 311-322.
- Armon, M.N. (1984): Soil crosion and degradation in south-eastern Nigeria in relation to biophysical and socio-economic factors. PhD-thesis, Department of Agronomy, University of Ibadan, Nigeria.
- Arnoldus, H.M.J. (1977): Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Marocco. In: Assessing soil degradation. FAO Soils Bull. 34: 39-48.
- Arnoldus, H.M.J. (1978): An approximation of the rainfall factor in the Universal Soil Loss Equation. In: DeBoodt, M. & Gabriels, D. (eds.): Assessment of erosion, John Wiley, New York: 127-132.
- Asoegwu, S.N. & Obiefuna, J.C. (1990): Preliminary evaluation of pineapple mixed cropping systems for protecting reclaimed gullys in the tropics: an experiment in south-east Nigeria. Land Degradation & Rehabilitation 2, 3: 237-241.
- Auerswald, K. & Eicher, A. (1992): Comparison of German and Swiss rainfall simulators: Accuracy of measurement and effect of rainfall sequence on runoff and soil loss rates. Z. Pflanzenernähr. Bodenk. 155: 191-195.
- Auerswald, K.; Kainz, M.; Schröder, D. & Martin, W. (1992a): Comparison of German and Swiss rainfall simulators – Experimental setup. Z. Pflanzenernähr. Bodenk. 155: 1-5.

- Auerswald, K.; Kainz, M.; Wolfgarten, H.J. & Botschek, J. (1992b): Comparison of German and Swiss rainfall simulators – Influence of plot dimensions. Z. Pflanzenernähr. Bodenk. 155: 493-497.
- Auerswald, K.; Sinowski, W. & Häusler, W. (1992c): Gewässerversauerung und Gewässereutrophierung – ökologische Folgen lateraler Stoffflüsse in Böden. Landwirtschaftliches Jahrbuch 2: 87-96.
- **Barfield, B.J. & Albrecht, S.C. (1982):** Use of a vegetative filter zone to control fine- grained sediments from surface mines. Symposium on Surfaces Mining Hydrology, Sedimentology and Reclamation, Univ. of Kentucky, Lexington, Kentucky, Dec. 5-10, 1982; 481-490.
- **Becher, H.H. (1990)**: Comparison of German and Swiss rainfall simulators Relative drop energies and their distribution in time and space for simulated rains. Z. Pflanzenernähr. Bodenk. 153: 409-414.
- Bennett, H.H. & Chapline, W.R. (1928): Soil erosion a national menace. US Dep. Agric., Circ. 33.
- Blaikie, P.M. (1985): The political economy of soil erosion in developing countries. Longman, London.
- **Bonsu, M. (1980):** Assessment of erosion under different cultural practices on a savanna soil in the northern region of Ghana. In: Morgan, R.P.C. (ed.): Soil conservation, problems and prospects. Proc. Int. Conf. Soil Conservation, Silsoe, U.K., John Wiley & Sons, New York: 247-253.
- Bonsu, M. & Obeng, H.B. (1979): Effects of cultural practices on soil erosion and maize production in the semi-deciduous rainforest and forest-savanna transitional zones of Ghana. In: Lal, R. & Greenland, D.J. (eds.): Soil physical properties and crop production in the tropics. John Wiley & Sons, New York: 509-519.
- **Bouwman, A.F. (1989):** Modelling soil organic matter decomposition and rainfall erosion in two tropical soils after forest clearing for permanent agriculture. Land Degradation & Rehabilitation, 1: 125-140.
- Bresch, J. (1993): Die Erosivität der Niederschläge Kameruns. M.Sc. thesis, Lehrstuhl für Bodenkunde, Technische Universität München, Germany: 92 pp.
- British Westafrican Meteorological Services (1954): Preliminary note on the climate of Nigeria. Manuscript: 4 pp.
- Bundesamt für Seeschiffahrt und Hydrographie (1991 a): Handbuch der Westküste Afrikas. Nr. 2040. Hamburg, Germany: 520 pp.
- **Bundesamt für Seeschiffahrt und Hydrographie** (**1991 b**): Handbuch der Süd- und Ostküste Afrikas. Nr. 2046. Hamburg, Germany: 344 pp.
- Bundesamt für Seeschiffahrt und Hydrographie (1992):

Mittelmeerhandbuch, III. Teil (1989). Nachtrag Nr. 1. Nr. 2029. Hamburg, Germany: 363 pp.

- Cackett, K.E. (1964): A simple device for measuring canopy cover. Rhod. J. Agric. Res. 2: 56-57.
- Caine, N. (1980): The rainfall intensity-duration control of shallow landslides and debris flow. Geografiska Annaler, 62A: 23-27.
- **Carrara, P.E. & Carroll, T.R. (1979):** The determination of erosion rates from exposed tree roots in the Piceance Basin, Colorado. Earth Surface Processes 4: 307-317.
- Carter, C.E.; Greer, J.D.; Braud, H.J. & Floyd, J.M. (1974): Raindrop characteristics in south central United States. Transactions of the ASAE 17, 6: 1033-1037.
- **Charreau, C. & Nicou, R. (1971):** L'amélioration du profil cultural dans les sols sableux de la zone tropicale sèche Ouest-Africaine et ses incidences agronomiques. Agron. Trop., 26, 9: 903-978.
- Chauvel, A.; Pedro, G. & Tessier, D. (1976): Rôle du fer dans l'organisation des matériaux kaoliniques. Science du Sol 2: 101-113.
- Chin & Tan (1974): Effects of simulated erosion on the performance of maize (Zea mays) and groundnut (Arachis hypogeae): a preliminary assessment. Symp. on Classification and Management of Malaysian Soils, Kota Kinebalu, Malaysia.
- Chorley, R.J. (1978): The hillslope hydrological cycle. In: Kirkby, M.J. (ed.): Hillslope hydrology. John Wiley & Sons, New York: 1-41.
- Chromec, F.W.; El-Swaify, S.A. & Lo, A.K.F. (1989): Erosion problems and research in Hawaii. In: Crouch, R.J. & Collison, J.E. (1989): An air injected, single nozzle rainfall simulator, designed for use on gully sides. Australian J. Soil Water Cons. 2, 3: 37-39.
- **CIEH** (1985): Isohyètes des pluies journalières de frequence décennale. Comité Interafricain d'études hydrauliques, B.P. 369, Ouagadougou, Burkina Faso.
- **CTFT (1973):** Défense et réstauration des sols. Gampela 1967-72. CTFT (Ouagadougou), Burkina Faso.
- Croouch, R.J. & Collison, J.E.: An air injected, single nozzle rainfall simulator, designed for use on gully sides. Austr. J. Soil Water Cons., 2, 3: 37-39.
- Dangler, E.W. & El-Swaify, S.A. (1976): Erosion of selected Hawaii soils by simu-lated rainfall. Soil Sci. Soc. Am. J. 40: 769-773.
- **Delwaulle, J.C. (1973):** Résultats de six ans d'obversations sur l'érosion au Niger. Bois et Forêts des Tropiques 150: 15-37.
- Dissmeyer, G.E. & Foster, G.R. (1980): A guide for predicting sheet and

rill erosionon forest land. U.S. Dept. Agric., Forest Serv. Tech. Publ. SA TP-11: 40pp.

- Duke, J.A.; Terrell, E.E. (1974): Crop diversification matrix: Introduction. Taxon, 23, 5/6: 759-799.
- **Dumas, J. (1965):** Relation entre l'érodibilité des sols et leurs caractéristiques analytiques. Cah. Orstom, Ser. Pédol. 3, 4: 307-333.
- Dunne, T. (1975): Sediment yields of Kenyan rivers. Unpublished report.
- **Dunne, T. (1978):** Field studies of hillslope processes. In: Kirkby, M.J. (ed.): Hillslope hydrology. John Wiley & Sons Ltd.: 227-293.
- Dunne, T.; Dietrich, W.E. & Brunengo, M.J. (1978): Recent and past erosion rates in semi-arid Kenya. Z. Geomorph. N. F., Suppl.-Bd. 29: 130-140.
- **Durand, P. (1983):** Lutte contre l'érosion. Synthèse des essais après la campagne 1983 à Rushubi. Manuscript: ?pp.
- **Ekwue, E.I. (1991):** The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technology 4: 197-207.
- El-Swaify, S.A. (1990): Research needs and applications to reduce erosion and sedimentation in the tropics. Proceed. Fiji Symp., June 1990, IAHS-AISH Publ. 192: 3-13.
- El-Swaify, S.A. & Dangler, E.W. (1977): Erodibility of selected tropical soils in relation to structural and hydrologic parameters. In: Soil erosion: Prediction and control. Soil Cons. Soc. Am. Spec. Publ. 21: 105-114.
- El-Swaify, S.A. & Dangler, E.W. (1982): Rainfall erosion in the tropics: A state of the art. In: Soil erosion and conservation in the tropics. Soil Sci. Soc. Am. Spec. Publ. 43: 1-25.
- El-Swaify, S.A.; Lo, A.; Joy, R.; Shinshiro, L. & Yost, R.S. (1988): Achieving conservation-effectiveness in the tropics using legume intercrops. Soil Technology 1: 1-12.
- Elwell, H.A. (1980a): A soil loss estimation technique for Southern Africa. In: Morgan, R.P.C. (ed.): Soil conservation, problems and prospects. Proc. Int. Conf. Soil Conservation, Silsoe, U.K., John Wiley & Sons, New York: pp. 281-292.
- Elwell, H.A. (1980b): Design of safe rotational systems. Department of Conservation and Extension, Zimbabwe, Manuscript: 50 pp.
- Elwell, H.A. (1984): Soil loss estimation: a modelling technique. In: Hadley, R.F. & Walling, D.E. (eds.): Erosion and sediment yield – Some methods of measurement and modelling. University Press, Cambridge, pp 15-30.
- Elwell, H.A.; (1993): Summary of crop cover mesurements for erosion and

runoff prediction and control 1959 to 1993 and 1984 analysis results. The Institute of Agricultural Engineering, Harare, Zimbabwe: 32 pp.

- Elwell, H.A. & Gardener, S. (1975): Comparison of two techniques for measuring percent canopy cover of row crops in erosion research programmes. Department of Conservation and Extension, Salisbury, Zimbabwe, Research Bulletin 19.
- Elwell, H.A. & Stocking, M.A. (1976): Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15: 61-70.
- Elwell, H.A. & Wendelaar, F.E. (1977): To initiate a vegetal cover data bank for soil loss estimation. Department of Conservation and Extension, Salisbury, Zimbabwe, Research Bulletin 23: 42 pp.
- Engelund, F. & Hansen, E. (1967): A nomograph on sediment transport in alluvial streams. Teknisk Verlag, Copenhagen, Denmark.
- Falayi, O. & Lal, R. (1979): Effect of aggregate size and mulching on crodibility, crusting, and crop emergence. In: Lal, R. & Greenland, D.J. (eds.): Soil physical properties and crop production in the tropics. John Wiley & Sons, New York: 87-93.
- **FAO** (1990): The conservation and rehabilitation of African lands. Rome, Italy: 38 pp.
- **FAO (1991):** Network on erosion-induced loss in soil productivity. Report of a Workshop, Centre for Soil & Agroclimate Research Bogor, Indonesia, March 1991: 52 pp.
- **FAO** (1993): The conservation and rehabilitation of African lands. FAO, Rome, ARC/90/4: 38 pp.
- Firth, C.R. & Whitlow, R. (1991): Patterns of gullying in Zimbabwe. Geojournal 23, 1: 59- 67.
- Flanagan, D.C.; Foster, G.R. & Moldenhauer, W.C. (1988): Storm pattern effect on infiltration, runoff, and erosion. Transactions of the ASAE 31.2: 414-420.
- Fones-Sundell, M. (1992): Survival for whom? Farmer, government and donor perspectives on land degradation in sub-saharan Africa. In: Tato, K. & Hurni, H. (eds.): Soil conservation for survival. Soil Water Cons. Soc.: 118-124.
- Foster, G.R. (1982): Modeling the erosion process. In: Haan, C.T.; Johnson, H.P. & Brakensick, D.L. (eds.): Hydrologic modeling of small watersheds. ASAE Monograph 5: 297-380.
- Foster, G.H. & Highfill, R.E. (1983): Effect of terraces on soil loss: USLE P factor values for terraces. J. Soil and Water Cons. 38, 1: 48-51.
- Foster, G.H.; Lombardi, F. & Moldenhauer, W.C. (1982): Evaluation of

rainfall-runoff erosivity factors for individual storms. Transactions of the ASAE 25, 1: 124-129.

- Foster, G.R. & Meyer, L.D. (1972): Mathematical simulation of upland erosion by fundamental erosion mechanics. Present and Prospective Techn. for Predicting Sediment Yields and Sources. Proc. Sediment Yield Workshop, USDA Sediment Lab., Oxford Miss., Nov. 28-30, 1972, ARS-S-40: 190-204.
- Foster, G.R.; Moldenhauer, W.C. & Wischmeier, W.H. (1982): Transferability of U.S. technology for prediction and control of erosion in the tropics. Am. Soc. of Agronomy and Soil Sci. Soc. Am. (eds.): Soil erosion and conservation in the tropics: 135-149.
- Foster, G.R.; Weesies, G.A.; Renard, K.G.; Yoder, D.C. & Porter, J.P. (1992): Support practice factor (P). In: Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K. & Yoder, D.C. (eds.): The Revised Universal Soil Loss Equation. Draft Version 1992. US Dept. of Agriculture.
- Fournier, F. (1962): Carte du danger d'érosion en Afrique au sud du Sahara. Communauté Economique Européenne avec Commission de Coopération Technique en Afrique, Paris.
- Fournier, F. (1967): La recherche en érosion et conservation des sols dans le continent africain. Sols Africains 12, 1: 5-51.
- Galabert, J. & Millogo, E. (1973): Indice d'érosion de la pluie en Haute Volta. CTFT, (Ouagadougou), Burkina Faso: 34 pp.
- Gasser, W. & Zöbisch, M.A. (1988): Erdrutschungen und Maßnahmen der Hang-sicherung. Selbstverlag des Verbandes der Tropenlandwirte, Witzenhausen, Germany: 165 pp.
- Ghadiri, H. & Payne, D. (1981): Raindrop impact stress. J. Soil Sci. 3, 2:41-49.
- Griffiths, J.F. (1972): In: Landsberg, H.E. (ed.): World Survey and Climatology. Elsevier, Amsterdam 10: 197-192.
- Griggs, G.B. & Gilchhurst, J.A. (1977): The earth and landuse planning. University of California, Santa Cruz, Duxbury Press.
- Gunn, R. & Kinzer, G.D. (1949): The terminal velocity of fall for water droplets in stagnant air. J. of Meterology 6: 243-248.
- Hettler, J. (1994): Höchste Gefahrenstufe für die Wälder im Wasser. Frankfurter Rundschau, 19. 07. 1994: 6.
- Herkendell, J. & Koch, E. (1991): Bodenzerstörung in den Tropen. Beck'sche Reihe 436, Germany: 184 pp.
- Hijkoop, J.; Van der Poel, P. & Kaya, B. (1991): Une lutte de longue

haleine. Aménagements anti-érosifs et gestion de terroir. Systèmes de production rurale au Mali: Volume 2. Institut d'Economie Rurale, Bamako, Mali et Institut Royal des Tropiques, Amsterdam, Pays-Bas: 154 pp.

- **Hoeblich, J.M. (1992):** Le lavaka malgache: Une forme d'érosion parfois utilisable. Reseau Erosion Bulletin 12: 255-268.
- Horton, R.E.; Leach, H.R. & Van Vliet, R. (1934): Laminar sheet-flow. Amer. Geophys. Union Trans. 2: 393-404.
- Hudson, N.W. (1961): Raindrop size distribution, kinetic energy and intensity of sub- tropical rainfall: 127-133.
- Hudson, N.W. (1963): Raindrop size distribution in high intensity storms. Rhod. J. Agric. Res. 1: 6-11.
- Hudson, N.W. (1975): Field engineering for agricultural development. Clarendon Press, Oxford, UK: 225 pp.
- Hudson, N.W. (1986): Soil conservation. Batsford Limited, London, UK: 324 pp.
- Hudson, N.W. (1991): A study of the reasons for success or failure of soil conservation projects. FAO Soils Bull. 64: 65 pp.
- Hudson, N.W. & Jackson, D.C. (1959): Results achieved in the measurement of erosion and runoff in southern Rhodesia. Third Inter-African Soils Conference, Dalaba, Africa Soils Bureau 2: 575-584.
- Hurni, H. (1980): A nomograph for the design of labour-intensive soil conservation measures in rain-fed cultivations. In: Morgan, R.P.C. (ed.): Soil conservation, problems and prospects. Proc. Int. Conf. Soil Conservation, Silsoe, U.K., John Wiley & Sons, New York: 185-210.
- ICRAF/GTZ (1991): The multi-purpose tree and shrub database. Version 1.
- Kainz, M. (1989): Runoff, erosion and sugarbeet yields in conventional and mulched cultivation. Results of the 1988 experiment. Soil Technology Serie 1: 103-114.
- Kainz, M.; Auerswald, K. & Vöhringer, R. (1992): Comparison of German and Swiss rainfall simulators – Utility, labour demands and costs. Z. Pflanzenernähr. Bodenk. 155: 7-11.
- Kamphorst, A. (1987): A small rainfall simulator for the determination of soil erodibility. Netherlands Journal of Agricultural Sciences 35: 407-415.
- **Kaye, C.A. (1959):** Shoreline features and quaternary shoreline changes. Puerto Rico. U.S. Geological Survey Professional Papers No. 317-B: 49-140.
- Keersebilck, N.C. (1990): Erosion control in the tropics. In: De Boodt, M.F.;

Hayes, M.H.B. & Herbillon, A. (eds.): Soil colloids and their associations in aggregates. Plenum Press, New York: 567-576.

- Kilewe, A.M. & Mbuvi, J.P. (1987): Evaluation of soil erodibility factors using natural runoff plots. East Afr. Agric. For. J. 53, 2: 57-63.
- Kirkby, M.J. (1980) (ed.): Hillslope hydrology. John Wiley & Sons, New York: 43-72.
- Kittler, G.A. (1962): Bodenfluß. Eine von der Agrarmorphologie vernachlässigte Erscheinung. Bundesanstalt für Landeskunde und Raumforschung, Selbstverlag, Bad Godesberg, Germany.
- Kollmannsperger, F. (1979): Erosion eine globale Gefahr. Deutsche Gesellschaft für Technische Zusammenarbeit, Eschborn: 63 pp.
- König, D. (1992): The potential of agroforestry methods for erosion control in Rwanda. Soil Technology 5: 167-176.
- Kowal, J.M. & Kassam, A.H. (1977): Energy load and instantaneous intensity of rainstorms at Samaru, northern Nigeria. In: Greenland, D.J. & Lal, R. (eds.): Soil conservation and management in the humid tropics. John Wiley & Sons, New York: 57-70.
- La Marche, V.C., Jr. (1968): Rates of slope degradation as determined from botanical evidence, White Mountains, California. US Geological Survey Professional Paper 352, 1: 341-377.
- Laflen, J.M.; Foster, G.R. & Onstad, C.A. (1985): Simulation of individual storm soil loss for modeling the impact of soil erosion on crop productivity. In: El-Swaify, S.A.; Moldenhauer, W.C. & Lo, A. (eds.): Soil erosion and conservation. Soil Cons. Soc. Am., Ankeny, Iowa.: 285-295.
- Lal, R. (1976a): Soil erosion problems on an Alfisol in western Nigeria and their control: International Institute for Tropical Agriculture, Monograph No. 1, Ibadan, Nigeria: 208 pp.
- Lal, R. (1976b): Soil erosion on Alfisols in Western Nigeria, III. Effects of rainfall characteristics. Geoderma 16: 389-401.
- Lal, R. (1980): Soil conservation: Preventive and control measures. In: Morgan, R.P.C. (ed.): Soil conservation, problems and prospects. Proc. Int. Conf. Soil Conservation, Silsoe, U.K., John Wiley & Sons, New York: 175-181.
- Lal, R. (1983): Soil erosion and its relation to productivity in tropical soils. In: El-Swaify, S.A.; Moldenhauer, W.C. & Andrew, L.O. (eds.): Proceedings of the International Conference of Soil Erosion and Conservation, Hawaii: 237-247.
- Lal, R. (1990): Soil erosion in the tropics. Mc Graw Hill, Inc., New York:

580 pp.

- Lal, R. (1992): Restoring land degraded by gully erosion in the tropics. Adv. Soil Sci., 17: 123-152.
- Lal, R.; Lawson, T.L. & Anastase, A.H. (1980): Erosivity of tropical rains. In: DeBoodt, M. & Gabriels, D. (eds.): Assessment of erosion. John Wiley, New York: 143-121.
- Larsen, M.C. & Simon, A. (1993): A rainfall intensity duration threshold for landslides in a humid-tropical environment, Puerto-Rico. Geografiska Annaler, 75 A, 1-2: 13-23.
- Laws, J.O. (1941): Measurements of the fall-velocity of water-drops and raindrops. Transact. Am. Geophys. Union: 709-722.
- Laws, J.O. & Parsons, D.A. (1943): The relation of raindrop-size to intensity. Transact. Am. Geophys. Union 24: 452-460.
- Lenvain, J.S.; Sakala, W.K. & Pauwelyn, P.L.L. (1988): Isoerodent map of Zambia Part II: Erosivity prediction and mapping. Soil Technology 1: 251-262.
- Leprun, J.C.; Silveira, C.O. da & Sobral Filho, R.M. (1986): Efficacité des pratiques culturales antiérosives testées sous différents climats brésiliens. Cah. Orstom, Ser. Pédol. 22,2: 223-233.
- Levy, G.J. & Van der Watt, H.H. (1988): Effects of clay mineralogy and soil sodicity on soil infiltration rate. S.-Afr. Tydskr. Plant Grond 5. 2: 92-96.
- Lewis, L.A. (1986): Predicting soil loss in Rwanda. In: Beek, K.J.: Burrough, P.A. & Mc Cormack, D.E. (eds.): Quantified land evaluation procedures. Proc. of the Int. Workshop, Washington DC, 27 April – 2 May 1986: 137-139.
- Luk, S. (1983): Effect of aggregate size and microtopography on rainwash and rainsplash erosion. Z. Geomorph. N.F., 27, 3: 283-295.
- Lyon, T.C. & Buckman, H.O. (1922): The nature and properties of soils. The Mac-millan Co., New York.
- Maene, L.M. & Chong, C.P. (1979): Drop size distribution and erosivity of tropical rainstorms under the oil palm canopy. Laporan Penyelidikan. Jabatan Sains Tanah. University Pertanian, Malaysia, Serdang, Selangor: 81-93.
- Mazour, M. (1992): Les facteurs de risque de l'érosion en nappe dans le bassin versant d'Isser Tlemcen Algerie. Reseau Erosion Bulletin 12: 300-313.
- Mbagwu, J.S.C.; Lal, R. & Scott, T.W. (1984): Effects of desurfacing of

Alfisols and Ultisols in southern Nigeria: I. Crop performance. Soil Sci. Soc. Am. J. 48: 828-833.

- McCool, D.K.;Brown, L.C.;Foster, G.R.;Mutchler, C.K.& Meyer, L.D. (1987): Revised slope steepness factor for the Universal Soil Loss Equation. Am. Soc. Agr. Eng.,Michigan:1387-1396.
- McCool, D.K.; Foster, G.R.; Mutchler, C.K. & Meyer, L.D. (1989): Revised slope length factor for the Universal Soil Loss Equation. Transactions of the ASAE 32, 5: 1571-1576.
- McCool, D.K.; Foster, G.R. & Weesies, G.A. (1992): Slope length and steepnessfactors (LS) In: Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.& Yoder, D.C.(eds.): Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Draftversion 1992.
- Merlier, H.; Montegut, J. (1982): Adventices tropicales: Flore aux stades plantale et adulte de 123 espéces africaines ou pantropicales. Ministère des Relations Extéricures, Cooperation et Développement, France.
- Meyer, L.D. (1988): Rainfall simulators for soil crosion research. In: Lal, R. (ed.): Soil crosion research methods. Soil Water Cons. Soc. Am., Ankeny, Iowa: 75-95.
- Meyer, L.D. & Harmon, W.C. (1985): Sediment losses from cropland furrows of different gradients. Transactions of the ASAE 28, 2: 448-453.
- Moeyersons, J. (1989): La nature de l'érosion des versants au Rwanda. Institut Nat. de Recherche Scientifique, Butare, Republique Rwandaise, Pub. 43: 379 pp.
- Mokhtaruddin, A.M. & Maene, L.M. (1979): Soil erosion under different crops and management practices. In: Proc. Intern. Conf. on Agric. Engineering in National Development, September 1979, Serdang, Malaysia, University of Pertania, Malaysia.
- Moore, T.R. (1979): Rainfall erosivity in East Africa. Geografiska Annaler 61A, 3-4: 147-156.
- Morgan, R.P.C. (1986): Soil erosion and conservation. Longman, UK: 298 pp.
- Mostafa, K.T. & Osama, A.E.K. (1992) (eds.): The world environment 1972–1992. Two decades of challenge. Chapman & Hall, London, England.
- **Musgrave, G.W. (1947):** The quantitative evaluation of factors in water erosion, a first approximation. J. Soil Water Cons. 2, 3: 133-138.
- Mtakwa, P.W.; Lal, R. & Sharma, R.B. (1987): An evaluation of the

Universal Soil Loss Equation and field techniques for assessing soil erosion in a tropical Alfisol in Western Nigeria. Hydrological Processes 1: 199-209.

- Muller, J.P. (1977): La microlyse plasmique et la différenciation des épipédons dans les sols ferrallitiques rouges du Centre-Cameroun. Cah. Orstom, Ser. Pédol. 15, 4: 345-359.
- Murphee, C.E. & Mutchler, C.K. (1981): Verification of the slope factor in the Universal Soil Loss Equation for low slopes. J. Soil Water Cons. 36, 5: 300-302.
- Mutchler, C.K. & Greer, J.D. (1980): Effect of slope length on erosion from low slopes. Transactions of the ASAE 23, 4: 866-869, 876.
- Mutchler, C.K. & McGregor, K.C. (1983): Erosion from low slopes. Water Resources Research, 19, 5: 1323-1326.
- Mutchler, C.K. & Young, R.A. (1975): Soil detachment by raindrops. U.S. Agric. Res. Serv. Rep. ARS-S-40: 113.
- Nelson, H.D. (1984) (ed.): Mozambique a country study. Headquarters. Department of the Army, DA Pam 550-64, USA: 341 pp.
- Ngatunga, E.L.N.; Lal, R. & Uriyo, A.P. (1984): Effects of surface management on runoff and soil erosion from some plots at Mlingano, Tanzania. Geoderma 33: 1-12.
- Nill, D. (1993): Soil erosion from natural and simulated rain in forest-, savannah- and highland areas of humid to sub-humid West Africa and influence of management. PhD thesis, Lehrstuhl für Bodenkunde, Technische Universität München, Germany: 270 pp.
- Nyagumbo, I. (1992): The influence of socio-economic factors on potential adoption of no- till tied-ridging in four communal areas of Zimbabwe. In: Vogel, H.: Conservation tillage for sustainable crop production systems. Project Report no. 5, P.O.Box BW 415, Borrowdale, Harare, Zimbabwe: 19-32.
- Nyamulinda, V. (1991): Erosion sous cultures de versants et transports solides dans les bassins de drainage des hautes terres de Ruhengeri au Rwanda. Reseau Erosion Bulletin 11: 38-63.
- **O'Laughlin, C.L. (1981):** Tree roots and slope stability. Forest Research Institute, No. 104, Christchurch, New Zealand.
- **Oostwoud Wijdenes, D.J. & Bryan, R.B. (1991):** Gully development on the Njemps Flats, Baringo, Kenya. Catena Supplement 19: 71-90.
- **Othieno, C.O. (1975):** Surface runoff and soil erosion on fields of young tea. Trop. Agriculture 52, 4: 299-308.
- Owens, L.B. (1974): Rates of weathering and soil formation on granite.

Unpubl. report, Dep. Agric. Univ. of Rhodesia.

- Patil, P.P. & Bangal, G.B. (1991): Effects of land slope and cultivation practices on soil loss and runoff due to rainfall. J. of Maharashtra Agricultural Universities 16, 2: 155- 158.
- Pauwelyn, P.L.L.; Lenvain, J.S. & Sakala, W.K. (1988): Iso-erodent map of Zambia part I: The calculation of erosivity indices from a rainfall data bank. Soil Technology 1: 235-250.
- Petri, R. (1992): Erosionsdisposition (C-Faktoren) traditioneller Anbausysteme Kameruns. M.Sc. thesis, Lehrstuhl für Bodenkunde, Technische Universität München, Germany: 80 pp.
- Pierce, F.J.; Larson, W.E.; Dowdy, R.H. & Graham, W.A.P. (1983): Productivity of soils: Assessing long-term changes due to erosion. J. Soil Water Cons.: 39-44.
- **Pimentel, D.; Terhune, E.C.; Dyson-Hudson, R. & Rocherau, S. (1976):** Land degradation: Effects on food and energy resources. Science 94: 149-155.
- **Poesen, J. (1984):** The influence of slope angle on infiltration rate and Hortonian overland flow volume. Z. Geomorph. N. F., Suppl.-Bd. 49: 117-131.
- Pontanier, R.; Moukouri Kouh, H.; Sayol, R.; Seiny-Boukar, L. & Thebe, B. (1984): Comportement hydrique et sensibilité à l'érosion de quelques sols du Nord Cameroun. Ministère de l'Enseignement Supérieure et de la Recherche Scientifique, Cameroun: 76 pp.
- Quansah, C.; Baffoe-Bonnie, E. & Agyei, F. (1990): Runoff and soil loss under four legumes. In: Zöbisch, M.A. (ed.): Land use and the environment. Proc. 11th Ann. Meeting of the Soil Science Soc. of Ghana: 67-75.
- Raussen, T. (1990): Planung von Windschutz-Pflanzungen in ariden und semiariden Gebieten. Der Tropenlandwirt, Beiheft 43: 232 pp.
- Rehm, S. & Espig, G. (1976): Die Kulturpflanzen der Tropen und Subtropen. Eugen Ulmer, Stuttgart, Germany: 496 pp.
- Reining, L. (1991): Charakterisierung und Verminderung der Bodenerosion durch Wasser in kleinbäuerlichen Maniokanbausystemen. Beiträge zur Agrarwissenschaften 4, Verlag w. Mahle, Witterschlick, Bonn. Germany: 266 pp.
- Renard, K.G.; Foster, G.R.; Weesies, G.A. & Porter, J.P. (1991): RUSLE- Revised Universal Soil Loss Equation. J. Soil Water Cons. 46, 1: 30-33.
- Rhoton, F.E.; Meyer, L.D. & McChesney, D.S. (1991): Depth-of-crossion

assessment using iron-manganese nodule concentrations in surface horizons. Soil Sci., 152, 5: 389-394.

- **Rishirumuhirwa, T. (1992):** Ruissellement et érosion sous bananier au Burundi. Reseau Erosion Bulletin 12: 83-93.
- Römkens, M.J.M.; Roth, C.B. & Nelson, D.W. (1977): Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Sci. Soc. Am. J. 41: 954-960.
- Roose, E.J. (1975): Erosion et ruissellement en Afrique de l'Ouest. Vingt année de mesures en pétites parcelles expérimentales. Orstom, B.P. 20, Abidjan, Ivory Coast: 72 pp.
- Roose, E.J. (1977): Use of the Universal Soil Loss Equation to predict erosion in West- Africa. In: Soil erosion, prediction and control. Soil Conserv. Soc. Am., Spec. Pub. 21, Ankeny, Iowa: 60-74.
- Roose, E.J. & Bertrand, R. (1971): Contribution à l'étude de la méthode des bandes d'arrêt pour lutter contre l'erosion hydrique en Afrique de l'Ouest. Agron. Trop. 26, 11: 1270- 1283.
- Roose, E. & Jadin, P. (1969): Erosion, ruisellement et drainage oblique sur un sol à cacao de moyenne Côte d'Ivoire. ORSTOM/IFCC., Abidjan, Ivory Coast: 77 pp.
- Roose, E. & Piot, J. (1984): Runoff, erosion and soil fertility restoration on the Mossi Plateau (central Upper Volta). Challenges in African Hydrology and Water Resources, Proc. of the Harare Symposium, July 1984, IAHS Publ. 144: 485-498.
- Roose, E. & Sarrailh, J.M. (1989): Erodibilité de quelques sols tropicaux. Vingt années de mesure en parcelles d'erosion sous pluies naturelles. Cah. Orstom, Ser. Pédol. 25, 1-2: 7-30.
- Roth, C.B.; Darrell, W.N. & Römkens, M.J.M. (1974): Prediction of subsoil erodibility using chemical mineralogical and physical parameters. Report for Office of Research and Development, U.S. Environ. Protect. Agency, Project No. 15030 HIX, Element 1BB042, Manuscript: 111 pp.
- Ryumugabe, J.B. & Berding, F.R. (1992): Variabitité de l'indice d'agressivité des pluies au Rwanda. Reseau Erosion Bulletin 12: 113-119.
- Sabel-Koschella, U. (1988): Field studies on soil erosion in the southern Guinea Savanna of Western Nigeria. PhD thesis, Lehrstuhl für Bodenkunde, Technische Universität München, Germany: 180 pp.
- Salako, F.K. (1988): Determination of potential sheet and rill erosion losses in southeastern Nigeria as a guide for soil conservation planning. Beiträge trop. Landwirtsch. Veterinärmed. 26, 2: 117-125.
- Salako, F.K.; Obi, M.E. & Lal, R. (1991): Comparative assessment of

several rainfall erosivity indices in southern Nigeria. Soil Technology 4: 93-97.

- Schauder, H. & Auerswald, K. (1992): Long-term trapping efficiency of a vegetated filter strip under agricultural use. Z. Pflanzenernähr. Bodenk. 155: 489-492.
- Schauer, T.H. (1975): Die Blaikenbildung in den Alpen. Schriftenreihe des Bayer. Landesamtes für Wasserwirtschaft, München, Germany, 8, 29.

Schliephake, K. (1984): Tunesien. Thiememann, Stuttgart, Germany: 600 pp.

- Schuster, R.L. (1978): Landslides, analysis and control. Nat. Acad. Sci., Washington, D.C., Special Report 176.
- Schwertmann, U.; Vogl, W. & Kainz, M. (1987): Bodenerosion durch Wasser. Eugen Ulmer Verlag, Stuttgart, Germany: 62 pp.
- Segalen, P. (1967): Les sols et la géomorphologie du Cameroun. Cah. Orstom, Ser. Pédol. 5, 2: 137-187.
- Servico Meteorológico (1972): Cartas das isoietas médias mensais e annais das ilhas de S. Tomé e Príncipe. S. Tomé: 59 pp.
- Shainberg, I. (1985): The effect of exchangeable sodium and electrolyte concentration on crust formation. Advances in Soil Science 1: 101-122.
- Shainberg, I.; Gal, M.; Ferreira, A.G. & Goldstein, D. (1991): Effect of water quality and amendments on the hydraulic properties and erosion from several mediterranean soils. Soil Technology 4: 135-146.
- Sheng, T.C. (1989): Soil conservation for small farmers in the humid tropics. FAO Soils Bull. 60: 104 pp.
- Sheng, T.C. (1990): Runoff plots and crosion phenomena on tropical steeplands. Research needs and applications to reduce erosion and sedimentation in tropical steeplands, Proc. Fiji Symp., June 1990, IAHS-AISH Publ. 192: 154-161.
- Sick, W.D. (1979): Madagaskar. Tropisches Entwicklungsland zwischen den Kontinenten. Wissenschaftliche Buchgesellschaft Darmstadt, Germany: 321 pp.
- Simonart, T.; Duchaufour, H.; Bizimana, M. & Mikokoro, C. (1993): La conservation des sols en milieu paysan burundais. Etude et hierarchisation des stratégies anti-érosives. Reseau Erosion, Bulletin No. 13: 72-83.
- Singer, M.J.; Blackard, J. & Janitzky, P. (1980): Dithionite iron and soil cation content as factors in soil erodibility. In: De Boodt, M. & Gabriels, D. (eds.): Assessment of erosion. John Wiley, New York: 259-267.
- Smith, D.D. (1941): Interpretation of soil conservation data for field use.

Agr. Eng., 22: 173-175.

- Smithen, A.A. & Schulze, R.E. (1982): The spatial distribution in southern Africa of rainfall erosivity for use in the Universal Soil Loss Equation. Water SA 8, 2: 74-78.
- **Stocking, M.A. (1981):** Causes and prediction of the advance of gullies. Proc. South-East Asian Regional Symp. on Problems of soil erosion and sedimentation, Bangkok 27-29 Jan.: 37-47.
- **Stocking, M.A. (1988):** Assessing vegetative cover and management effects. In: Lal, R. (ed.): Soil erosion research methods: 163-185.
- Stocking, M.A. & Elwell, H.A. (1976): Rainfall erosivity over Rhodesia. Trans. Inst. Br. Geogr. 1, 2: 231-245.
- Suchel, J.B. (1972): La répartition des pluies et les régimes pluviométriques au Cameroun. Travaux et Documents de Géographie Tropicale, no. 5. CEGET, Talence, France: 287 pp.
- Sulaiman, W.; Maene, L.M. & Mokhtaruddin, A.M. (1981): Runoff, soil and nutrient losses from an Ultisol under different legumes. SouthEast Asian Regional Symp. on Problems of Soil Erosion and Sedimentation, Bangkok, Thailand, 27-29 Jan. 1981: 275- 286.
- Sulaiman, W.H.W.; Mok, C.K.; Maesschalck, G. & Jamal, T. (1983): Advances in soil and water conservation research in Malaysia. Pertanika 6 (Rev. suppl.): 115-132.
- Sutherland, R.A. & Bryan, R.B. (1990): Runoff and erosion from a small semiarid catchment. Baringo District, Kenya. Applied Geography 10: 91-109.
- **Swaziland (1990):** Annual statistical bulletin. Central Statistical Office, P.O. Box 456, Mbabane, Swaziland: 148 pp.
- Tato, K. & Hurni, H. (1992) (eds.): Soil conservation for survival. Soil and Water Cons. Soc., Ankeny, Iowa: 420 pp.
- **Temple, P.H. (1972):** Measurements of runoff and soil erosion at an erosion plot scale with particular reference to Tanzania. Geografiska Annaler 54A: 203-220.
- **Temple, P.H. & Rapp, A. (1972):** Landslides in the Mgeta area. Western Uluguru Mountains, Tanzania. Geografiska Annaler, 54A. 3-4: 157-193.
- **Thornbury, W.D. (1985):** Principles of geomorphology. John Wiley & Sons, New York: 594 pp.
- Torrent, J. & Barrón, V. (1993): Laboratory measurement of soil colour: Theory and practice. In: Bigham, J.M. & Ciołkosz, E.J. (eds.): Soil colour. Soil Sci. Soc. Am. Spec. Pub. 31: 21-33.
- Ulsaker, L.G. & Kilewe, A.M. (1984): Runoff and soil erosion for an Alfisol

in Kenya. East African Agric. Forestry J. (Special Issue) 44: 210-241.

- USDA (1972): SCS National Engineeing Handbook. US Dept. Agric., Soil Cons. Serv., Section 4, Hydrology.
- USDA (1979): Proceedings of the rainfall simulator workshop, Tucson, Arizona. ARM-W- 10. Northern Plains Soil and Water Research Center, Sydney, Montana: 185 pp.
- Valentin, C. & Janeau, J.L. (1989): Les risques de dégradation structurale de la surface des sols en savanc humide (Côte d'Ivoire). Cah. Orstom, Ser. Pédol. 25, 1-2: 41-52.
- Van Liew, M.W. & Saxton, K.E. (1983): Slope steepness and incorporated residue effects on rill erosion. Transactions of the ASAE 83: 1738-1743.
- Vanelslande, A.; Rousseau, P.; Lal, R.; Gabriels, D. & Ghuman, B.S. (1984): Testing the applicability of a soil erodibility nomogram for some tropical soils. Challenges in African Hydrology and Water Resources, Proceedings of the Harare Symposium, July 1984, IAHS Publ. 144: 463-473.
- **Vogel, H. (1988):** Deterioration of a mountainous agro-ecosystem in the third world due to emigration of rural labour. Mountain Research and Development 8, 4: 321-329.
- Vogel, H. (1992): An evaluation of five tillage systems for smallholder agriculture in Zimbabwe. Project Report no. 5, P.O.Box BW 415, Borrowdale, Harare, Zimbabwe: 1-18.
- Von Gnielinski, S. (1986): Ghana. Tropisches Entwicklungsland an der Oberguineaküste. Wissenschaftliche Buchgesellschaft Darmstadt, Germany: 278 pp.
- Von Maydell, H.J. (1983): Arbres et arbustes du Sahel. Schriftenreihe der Gesellschaft für Technische Zusammenarbeit No. 147: 531 pp.
- Walling, D.E. (1984): The sediment yields of African rivers. Challenges in African Hydrology and Water Resources, Proceedings of the Harare Symposium, July 1984, IAHS Publ. 144: 265-283.
- Walling, D.E. (1988): Measuring sediment yield from river basins. In: Lal, R. (ed.): Soil erosion research methods. Soil Water Cons. Soc. Am., Ankeny, Iowa: 39-73.
- Weber, F.R. & Stoney, C. (1986): Reforestation in arid lands. Volunteers in Technical Assistance, 1815 North Lyun Street, Suite 2000, Arlington, Virginia 22209, USA: 167 pp.
- Wenner, C.G. (1977): Soil conservation in Kenya. Land and Management Division, Ministry of Agriculture, Nairobi, Kenya: 205 pp.
- Wenner, C.G. (1989): Soil and water conservation in the farming areas of Lesotho: A review and some proposals. Topics in Applied Resource Management 1: 57-86.
- Wiese, B. (1988): Elfenbeinküste. Erfolge und Probleme eines Ent-

wicklungslandes in den westafrikanischen Tropen. Wissenschaftliche Buchgesellschaft, Darmstadt, Germany: 303 pp.

- Wilkinson, G.E. (1975): Rainfall characteristics and soil erosion in the rainforest area of Western Nigeria. Expl. Agric. 11: 247-255.
- Wilson, R.C.; Torikai, J.D. & Ellen, S.D. (1992): Development of rainfall warning thresholds for debris flow in the Honolulu district, Oahu. U.S. Geol. Survey Openfile Report 92-521: 35pp.
- Wischmeier, W.H. (1966): Relation of field-plot runoff to management and physical factors. Soil Sci. Soc. Am. Proc. 30: 272-277.
- Wischmeier, W.H. (1975): Estimating the soil loss equations cover and management factor for undisturbed areas. U.S. Agr. Res. Ser. (Rep.), ARS-S-40: 285 pp.
- Wischmeier, W.H. (1976): Use and misuse of the Universal Soil Loss Equation. J. Soil Water Cons. 31, 1: 5-9.
- Wischmeier, W.H. & Mannering, J.V. (1969): Relation of soil properties to its erodibility. Soil Sci. Soc. Am. Proc. 33: 131-137.
- Wischmeier, W.H. & Smith, D.D. (1958): Rainfall energy and its relationship to soil loss. Transactions, American Geophysical Union 39, 2: 285-291.
- Wischmeier, W.H. & Smith, D.D. (1978): Predicting rainfall erosion losses – a guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook No. 537: 58 pp.
- Wischmeier, W.H.; Johnson, C.B. & Cross, B.V. (1971): A soil erodibility nomograph for farmland and construction sites. J. Soil Water Cons. 26, 5: 189-193.
- Yoder, D.C.; Porter, J.P.; Laflen, J.M.; Simanton, J.R.; Renard, K.G.; McCool, D.K. & Foster, G.R. (1992): Cover management factor (C). In: Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K. & Yoder, D.C. (coord.): Predicting soil erosion by water. A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Draft version 1992. US Dept. Agriculture.
- Young, A. (1989): Agroforestry for soil conservation. CAB International, Wallingford, UK: 276 pp.
- Zingg, A.W. (1940): Degree and length of land slope as it affets soil loss in runoff. Agric. Eng., 21, 2: 59-64.
- Zöbisch, M.A. (1986): Erfassung und Bewertung von Bodenerosionsprozessen auf Weideflächen im Machakos-Distrikt von Kenia. Der Tropenlandwirt, Beiheft Nr. 27: 220 pp.

Index

10 year storm 45, 92, 146, 210 Aggregate 47, 104 Aggregate size 37 Aggregation 36, 38, 41 Alfisol 66, 108, 147, 160 Algeria 165, 194 Aluminium 38 Andisol 66 Angola 179, 194 Antecedent moisture 38, 62, 70 Arid 37 Aridisol 66, 147 Assessment 69 Bambara nut 250 Banana 234 Barefallow 28, 35, 75 Base level 61 Beans 250 Bed load 25 Bedding 43 Bedload 22, 84 Bench terrace 53 Benin 195 Biological activity 16, 41, 42 Botswana 195 Brick 50 Buffer strip 261 Bufferstrip 153 Bulk density 104, 106 Bund 41, 48, 51, 156 Bunds 260 Burkina Faso 165, 168, 195 Burundi 165, 171, 195 C factor 117 Cabbage 250 Cameroon 100, 122, 165, 168, 172, 195, 210

Canary Islands 197 Canopy 217 Canopy cover 124 Canopy height 123 Cassava 238 Cation exchange capacity 47 Cause -Illiteracy 14 -Poverty 12 Causes -physical 11 Central Africa 198 Channel erosion 20 Chili 251 Clay 35, 36, 37, 47, 101 Climate 62 Compaction 29 Congo 199 Conservation 11 Conservation bench terrace 53 Contour ridging 43 Contour-ridging 145 Contouring 42, 145, 258 Coral riff 21 Coshocton wheel 75 Cotton 251 Cover 40, 72, 117, 217 Cowpea 251 Crop stage 117 Cropping cycle 37 Dam 20 Damage 45 Damages 15 -off-site 15, 20 -on-site 15 Deforestation 12, 20 Deposition 41, 45, 47, 50

Depression storage 22 Detachment 22 Detention storage 22 Digues déversantes 50 **Digues filtrantes 50** Dispersion 38 Ditch 158 Drainage ditch 51 Drop 69 Dunne flow 26 Dyke 50 East Africa 51 Economy 19 Egypt 199 Encapsulated air 38 Energy 32, 89 Equatorial Guinea 180, 199 Eritrea 199 Erodibility 36, 37, 66, 70, 75, 87, 99 Erosion 16 -geologic 11 -selective 16 Erosion cycle 58 Erosion nails 77 Erosivity 32, 92, 117, 168 Erosivity indices 33 Ethiopia 181, 199 Exchangeable cations 37 Fallow 47, 125, 230 Fallows 37 Fanya Juu 51, 158 Fertility 20 Fertilizer 19 Filter-strip 41 Filter-strips 47 Flood 20, 50 Flow depth 23 Flow velocity 23, 25 Flume 72 Fodder crop 232

Forest 11, 12, 125, 230 Fournier index 33 Furrow 45, 46, 146 Gabon 200 Geologic erosion 58 Geology 62 Ghana 182, 200 Gradient 29, 43, 213 Gravel 43, 101 Groundnut 120, 243 Groundwater 20 Growth curve 119, 226 Growth stage 72 Guinea 201 Gully 19, 58 Hail 93 Handtillage 42, 145 Hard setting 28 Heaping 43, 45 Heaps 156 Hematite 66 Highland 66 Hillside ditch 51 Hillside-ditch 41 Horton flow 26 Hudson index 33 Inceptisol 66, 108, 147 Indicator 67 Infiltration 22, 26, 36, 42, 48 Inselberg 58 Institution 13 Intensity 31, 32, 33, 89 Intermittent terrace 55 Interrill 22, 39 Interterrace 53 Irish potatoes 252 Iso-erodent map 33, 34 Iso-erodent maps 91 Ivory Coast 166, 183, 201 Kaolinite 35

Kenya 166, 169, 201 Laboratory tests 70 Land tenure 14 Landscape 58 Landslide 62 Leaching 18 Lemon grass 252 Lesotho 201 Level bench terrace 53 Liberia 184, 201 Lowland 66 LS factor 40, 111 Lybia 201 Madagascar 67, 166, 185, 202 Madeira 202 Magnesium 37 Maize 120, 245 Malawi 186, 203 Mali 203 Management 37, 40 Manning 23 Marocco 173, 203 Mauritania 203 Mauritius 204 Migration 12 Mineral 35 Minerals 43 Mocambique 204 Mollisol 66 Mounds 260 Mozambique 187 Mudflow 62 Mulch 42, 43, 117, 124, 217 Musgrave equation 86 Namibia 204 Niger 166, 169, 204 Nigeria 166, 169, 188, 204 Notillage 255 Orchard terrace 55 Organic carbon 17

Organic matter 16, 37, 47, 66, 101 Overgrazing 12, 63 Overland flow 23 Overpopulation 13 Oxide 35, 108 Oxides 70 Oxisol 35, 66, 147 P factor 145 Papaya 252 Parent material 15, 64, 108 Pediplain 58 Peneplain 58 Permeability 102 Permeability class 102 Pineapple 235 Plastic foil 43 Ponding 22 Poverty 12 Pressures 31 Principe 190 **Ouintuples** 46 R factor 32, 89 Rain drop 31 Rainfall 31 -Energy 31 Rainfall simulator 69, 72 Refugees 13 Relative erosivity 119 **Remobilization 84** Residual effect 125 Residue 42 Residues 231 Retention storage 22 **Revised Universal Soil Loss** Equation 39, 146 Ridge 259 Rill 19, 22, 29, 39, 45 Riparian filter strip 154 River 20, 67, 84 Root 37, 68, 81, 160

Runoff 15, 28, 42, 45, 48, 70, 114 Runoff coefficient 28 Runoff plots 75 Runoff velocity 40, 48, 114, 154 **RUSLE 40** Rwanda 166, 169, 189 Sabre growth 63 Sahel 169 Saline 38 Sand 36, 47 Sao Tomé 190, 205 Schist 62 Sealing 22, 26, 28, 29, 36 Seal 37 Season 31, 38 Sediment delivery ratio 84, 159 Sediment enrichment ratio 17 Sediment traps 79 Sediment yield 84 Seismic activity 62 Selective removal 43 Semi-arid 37 Senegal 166, 205 Sheet erosion 22 Sheet flow 22 Side slope 43, 53 Side-slope 159 Sierra Leone 191, 205 Sighting frame 219 Silt 36 **SLEMSA 88** Slope 38, 62 -concave 114 -convex 114 -uniform 114 Slope length exponent 40 Slope length 29, 39, 111, 158, 213 Smectite 36 Socio-economy 11 Sodium 37, 42, 61

Soil

-bulk density 15 -depth 15 -fertility 18 -formation 11, 161 -function 15 -functions 160 -organic matter 37 -productivity 15 -properties 36 -texture 15 Soil classification 66 Soil colour 66 Soil loss 37, 87, 118 Soil loss ratio 118 Soil solution 38 Soil weathering 161 Somalia 206 Soudan 192, 206 South Africa 174, 206 Soya 252 Splash 22, 72 Splash erosion 22, 26, 37 Stream bank erosion 20 Streambank erosion 84 Structure 15 Structure class 101 Subfactor 123 Subsoil 101 Subsurface flow 61 Surface roughness 22 Surface storage 42 Suspended load 22, 25 Swaziland 207 Sweet potatoes 253 Tanzania 169, 207 Tchad 165 Temperature 38, 42, 66, 70 Terminal velocity 31 Terrace 41, 51, 53, 158

Texture 36 Tied ridging 43 Tied-ridge 259 Tied-ridging 145 Tillage 40, 41 Tobacco 253 Tolerance 18, 160 Topography 38 Transport capacity 20, 23, 154 Tunisia 193, 207 **Turbulence 25** Uganda 169, 208 Ultisol 66, 108, 147, 160 Ultisols 28 Unit plot 75, 86 Universal Soil Loss Equation 86 Vegetation 28, 35, 37, 62 Vertisol 36, 66, 147 Vertisols 28 Viscosity 38 Volcanic ash soils 106 Water capacity 37, 160 Water layer 31 Water mulch 38, 42 Water retention 161 Waterlevel 213 Waterlogging 48 Watershed 20, 26, 28, 62, 67, 84 Waterways 53 Weir 50 West Africa 40, 177 Wind 32 Yam 254 Yield 160 Zaire 208 Zambia 167, 170, 175, 208, 210 Zimbabwe 167, 170, 176

Acknowledgments

The authors thank the Deutsche Gesellschaft für Technische Zusammenarbeit GmbH (GTZ) for sponsering the book. We also appreciated very much Mrs. Schuhbauer's tedious work on the included maps.